Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hashimoto, Shunsuke*; Nakajima, Kenji; Kikuchi, Tatsuya*; Kamazawa, Kazuya*; Shibata, Kaoru; Yamada, Takeshi*
Journal of Molecular Liquids, 342, p.117580_1 - 117580_8, 2021/11
Times Cited Count:0Quasi-elastic neutron scattering (QENS) and pulsed-field-gradient nuclear magnetic resonance (PFGNMR) analyses of a nanofluid composed of silicon dioxide (SiO) nanoparticles and a base fluid of ethylene glycol aqueous solution were performed. The aim was to elucidate the mechanism increase in the thermal conductivity of the nanofluid above its theoretical value. The obtained experimental results indicate that SiO
particles may decrease the self-diffusion coefficient of the liquid molecules in the ethylene glycol aqueous solution because of their highly restricted motion around these nanoparticles. At a constant temperature, the thermal conductivity increases as the self-diffusion coefficient of the liquid molecules decreases in the SiO
nanofluids.
Okagaki, Yuria; Yonomoto, Taisuke; Ishigaki, Masahiro; Hirose, Yoshiyasu
Fluids (Internet), 6(2), p.80_1 - 80_17, 2021/02
Saito, Shimpei*; De Rosis, A.*; Fei, L.*; Luo, K. H.*; Ebihara, Kenichi; Kaneko, Akiko*; Abe, Yutaka*
Physics of Fluids, 33(2), p.023307_1 - 023307_21, 2021/02
Times Cited Count:2 Percentile:90.05(Mechanics)A Boiling phenomenon in a liquid flow field is known as forced-convection boiling. We numerically investigated the boiling system on a cylinder in a flow at a saturated condition. To deal with such a phenomenon, we developed a numerical scheme based on the pseudopotential lattice Boltzmann method. The collision was performed in the space of central moments (CMs) to enhance stability for high Reynolds numbers. Furthermore, additional terms for thermodynamic consistency were derived in a CMs framework. The effectiveness of the model was tested against some boiling processes, including nucleation, growth, and departure of a vapor bubble for high Reynolds numbers. Our model can reproduce all the boiling regimes without the artificial initial vapor phase. We found that the Nukiyama curve appears even though the focused system is the forced-convection system. Also, our simulations support experimental observations of intermittent direct solid-liquid contact even in the film-boiling regime.
Abe, Satoshi; Okagaki, Yuria; Ishigaki, Masahiro; Shibamoto, Yasuteru
Proceedings of OECD/NEA Workshop on Virtual CFD4NRS-8; Computational Fluid Dynamics for Nuclear Reactor Safety (Internet), 11 Pages, 2020/11
Sheikh, M. A. R.*; Liu, X.*; Matsumoto, Tatsuya*; Morita, Koji*; Guo, L.*; Suzuki, Toru*; Kamiyama, Kenji
Energies (Internet), 13(19), p.5018_1 - 5018_15, 2020/10
Times Cited Count:0 Percentile:0(Energy & Fuels)Herranz, L. E.*; Jacquemain, D.*; Nitheanandan, T.*; Sandberg, N.*; Barr, F.*; Bechta, S.*; Choi, K.-Y.*; D'Auria, F.*; Lee, R.*; Nakamura, Hideo
Progress in Nuclear Energy, 127, p.103432_1 - 103432_14, 2020/09
Trianti, N.; Motegi, Kosuke; Sugiyama, Tomoyuki; Maruyama, Yu
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 9 Pages, 2020/08
Nohara, Tsuyoshi; Uno, Masaoki*; Tsuchiya, Noriyoshi*
Geofluids, 2019, p.6053815_1 - 6053815_16, 2019/08
Times Cited Count:1 Percentile:0.02(Geochemistry & Geophysics)Amphibole-plagioclase thermometry was applied to estimate the temperature of a glassy vein as approximately 700. The results of observations of the rock core revealed that of supercritical fluid flow was microfracture filling with hornblende and plagioclase. The current high permeability was recognized to be microfracture network. A high-angle fracture of chlorite filling in combination with an open fracture was recognized as characteristics of a high-permeability type.
Uchibori, Akihiro; Watanabe, Akira*; Takata, Takashi; Ohshima, Hiroyuki
Nuclear Technology, 205(1-2), p.119 - 127, 2019/01
Times Cited Count:1 Percentile:23.13(Nuclear Science & Technology)To evaluate a sodium-water reaction phenomenon in a steam generator of sodium-cooled fast reactors, a computational fluid dynamics code SERAPHIM, in which a compressible multicomponent multiphase flow with sodium-water chemical reaction is computed, has been developed. The original SERAPHIM code is based on the difference method. In this study, unstructured mesh-based numerical method was developed to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Numerical analysis of an underexpanded jet experiment was performed as part of validation of the unstructured mesh-based numerical method. The calculated pressure profile and location of the Mach disk showed good agreement with the experimental data. Applicability of the numerical method for the actual situation was confirmed through the analysis of water vapor discharging into liquid sodium.
Phan, L. H. S.*; Ohara, Yohei*; Kawata, Ryo*; Liu, X.*; Liu, W.*; Morita, Koji*; Guo, L.*; Kamiyama, Kenji; Tagami, Hirotaka
Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 12 Pages, 2018/10
Self-leveling behavior of core fuel debris beds is one of the key phenomena for the safety assessment of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). The SIMMER code has been developed for CDA analysis of SFRs, and the code has been successfully applied to numerical simulations for key thermal-hydraulic phenomena involved in CDAs as well as reactor safety assessment. However, in SIMMER's fluid-dynamics model, it is always difficult to represent the strong interactions between solid particles as well as the discrete particle characteristics. To solve this problem, a new method has been developed by combining the multi-fluid model of the SIMMER code with the discrete element method (DEM) for the solid phase to reasonably simulate the particle behaviors as well as the fluid-particle interactions in multi-phase flows. In this study, in order to validate the multi-fluid model of the SIMMER code coupled with DEM, numerical simulations were performed on a series of self-leveling experiments using a gas injection method in cylindrical particle beds. The effects of friction coefficient on the simulation results were investigated by sensitivity analysis. Though more extensive validations are needed, the reasonable agreement between simulation results and corresponding experimental data preliminarily demonstrates the potential ability of the present method in simulating the self-leveling behaviors of debris bed. It is expected that the SIMMER code coupled with DEM is a prospective computational tool for analysis of safety issues related to solid particle debris bed in SFRs.
Shen, X.*; Schlegel, J. P.*; Hibiki, Takashi*; Nakamura, Hideo
Nuclear Engineering and Design, 333, p.87 - 98, 2018/07
Times Cited Count:5 Percentile:30.29(Nuclear Science & Technology)Ichikawa, Kenta*; Kanda, Hironori; Yoshioka, Naoki*; Ara, Kuniaki; Saito, Junichi; Nagai, Keiichi
Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 6 Pages, 2018/07
Studies on the suppression of the reactivity of sodium itself have been performed on the basis of the concept of suspended nanoparticles in liquid sodium (sodium nanofluid). According to the experimental and theoretical results of studies for sodium nanofluid, velocity and heat of sodium nanofluid-water reaction are lower than those of the pure sodium-water reaction. The analytical model for the peak temperature of a sodium nanofluid-water reaction jet has been developed in consideration of these suppression effects by the authors. In this paper, the prediction method for mitigation effects for a damage of adjacent tubes in a steam generator tube rupture (SGTR) accidents is arranged by applying this analytical model for the peak temperature of the reaction jet. On the assumption that the sodium nanofluid is used for the secondary coolant of sodium-cooled fast reactor (SFR), mitigation effects under the design-base accident (DBA) condition and the design-extension condition (DEC) of SGTR are estimated by using this method. As a result, there is a possibility to reduce the number of damaged tubes and to suppress the pressure generated by SGTR accidents by using sodium nanofluid in the secondary coolant.
Ono, Ayako; Suzuki, Takayuki*; Yoshida, Hiroyuki
Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 6 Pages, 2018/07
The mechanism of critical heat flux (CHF) for higher system pressure remains to be clarified, even though it is important to evaluate the CHF for the light water reactor (LWR) which is operated under the high pressure condition. In this study, the process of bubble coalescence was simulated by using a computational multi-fluid dynamics (CMFD) simulation code TPFIT under various system pressure in order to investigate the behavior of bubbles as a basic study. The growth of bubbles was simulated by blowing of vapor from a tiny orifice simulating bubble bottom. One or four orifices were located on the bottom surface in this simulation study. The numerical simulations were conducted by varying the pressure and temperature.
Uchibori, Akihiro; Watanabe, Akira*; Takata, Takashi; Ohshima, Hiroyuki
Journal of Nuclear Science and Technology, 54(10), p.1036 - 1045, 2017/10
Times Cited Count:3 Percentile:40.62(Nuclear Science & Technology)To evaluate a sodium-water reaction phenomenon in a steam generator of sodium-cooled fast reactors, a computational fluid dynamics code SERAPHIM, in which a compressible multicomponent multiphase flow with sodium-water chemical reaction is computed, has been developed. The original SERAPHIM code is based on the difference method. In this study, unstructured mesh-based numerical method was developed to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Numerical analysis of an underexpanded jet experiment was performed as part of validation of the unstructured mesh-based numerical method. The calculated pressure profile showed good agreement with the experimental data. Applicability of the numerical method for the actual situation was confirmed through the analysis of water vapor discharging into liquid sodium. The effect of use of the unstructured mesh was also investigated by the two analyses using structured and unstructured mesh.
Uchibori, Akihiro; Takata, Takashi; Ohshima, Hiroyuki; Watanabe, Akira*
Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) (USB Flash Drive), 12 Pages, 2017/09
To evaluate a sodium-water reaction phenomenon in a steam generator of sodium-cooled fast reactors, a computational fluid dynamics code SERAPHIM, in which a compressible multicomponent multiphase flow with sodium-water chemical reaction is computed, has been developed. The original SERAPHIM code is based on the difference method. In this study, unstructured mesh-based numerical method was developed to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Numerical analysis of an underexpanded jet experiment was performed as part of validation of the unstructured mesh-based numerical method. The calculated pressure profile and location of the Mach disk showed good agreement with the experimental data. Applicability of the numerical method for the actual situation was confirmed through the analysis of water vapor discharging into liquid sodium.
Kawata, Ryo*; Ohara, Yohei*; Sheikh, Md. A. R.*; Liu, X.*; Matsumoto, Tatsuya*; Morita, Koji*; Guo, L.*; Kamiyama, Kenji; Suzuki, Toru
Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) (USB Flash Drive), 14 Pages, 2017/09
Ito, Kei; Koizumi, Yasuo; Ohshima, Hiroyuki; Kawamura, Takumi*
Mechanical Engineering Journal (Internet), 3(3), p.15-00671_1 - 15-00671_9, 2016/06
Guo, L.*; Morita, Koji*; Tobita, Yoshiharu
Journal of Nuclear Science and Technology, 53(2), p.271 - 280, 2016/02
Times Cited Count:6 Percentile:61.4(Nuclear Science & Technology)Itami, Toshio*; Saito, Junichi; Ara, Kuniaki
Metals, 5(3), p.1212 - 1240, 2015/09
Times Cited Count:2 Percentile:7.14(Materials Science, Multidisciplinary)A new kind of suspension liquid was developed by dispersing Ti nanoparticles (10 nm) in liquid Na, which was then determined by TEM (transmission electron microscopy) analysis. The volume fraction was estimated to be 0.0088 from the analyzed Ti concentration (2 at.%) and the densities of Ti and Na. This suspension liquid, Liquid Sodium containing nanoparticles of titanium (LSnanop), shows, despite only a small addition of Ti nanoparticles, many striking features, namely a negative deviation of 3.9% from the ideal solution for the atomic volume, an increase of 17% in surface tension, a decrease of 11% for the reaction heat to water, and the suppression of chemical reactivity to water and oxygen. The decrease in reaction heat to water seems to be derived from the existence of excess cohesive energy of LSnanop. The excess cohesive energy was discussed based on simple theoretical analyses, with particular emphasis on the screening effect. The suppression of reactivity is discussed with the relation to the decrease of heat of reaction to water or the excess cohesive energy, surface tension, the action as a plug of Ti oxide, negative adsorption on the surface of LSnanop, and percolation.
Kato, Yuki; Yoshida, Hiroyuki; Yokoyama, Ryotaro*; Kanagawa, Tetsuya*; Kaneko, Akiko*; Monji, Hideaki*; Abe, Yutaka*
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 8 Pages, 2015/05