検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Simulation study of radial dose due to the irradiation of a swift heavy ion aiming to advance the treatment planning system for heavy particle cancer therapy; The Effect of emission angles of secondary electrons

森林 健悟

Nuclear Instruments and Methods in Physics Research B, 365(Part B), p.592 - 595, 2015/12

Aiming to advance the treatment planning system for heavy particle cancer therapy and to study cluster DNA damage, we have been developing a simulation model for radial dose due to the irradiation of a heavy ion. Now, two types of radial dose distributions have been available in the treatment planning system for heavy particle cancer therapy. However, these distributions had been developed without the detailed examinations of physical phenomena that occur near the trajectory of an incident ion, though this region is important to estimate the cell survival. The progress of computers allows us to execute such detailed examinations through simulations and to obtain radial dose closer to reality. We compare radial dose distribution obtained from our simulations with the conventional distributions and we suggest which conventional ones should be selected according to incident ion energies. Our simulation model, which has become possible in this century, is the only way to examine physical phenomena that occurs near the trajectory of an incident ion now as far as we know.

口頭

Development of radial dose simulation model toward the advancement of the treatment planning system for heavy particle cancer therapy

森林 健悟

no journal, , 

Aiming to advance the treatment planning system for heavy particle cancer therapy and to study cluster DNA damage, we have been developing a model for radial dose simulations due to the irradiation of heavy ions. Two types of radial dose distributions have been available in the treatment planning system for heavy particle cancer therapy. However, these distributions had been developed without the detailed examinations of physical phenomena that occur near the trajectory of an incident ion, though this region is important to estimate the cell survival. The progress of computers allows us to execute such detailed examinations through simulations and to obtain radial dose closer to reality. We compare radial dose distribution obtained from our simulations with the conventional distributions and we suggest which conventional ones should be selected according to incident ion energies. Our simulation model, which has become possible in this century, is the only way to examine physical phenomena that occurs near the trajectory of an incident ion now as far as we know.

2 件中 1件目~2件目を表示
  • 1