Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Quantitative analysis method for radiation distribution in high radiation environment by gamma-ray image spectroscopy (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2019-036, 65 Pages, 2020/03

JAEA-Review-2019-036.pdf:4.46MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Quantitative Analysis Method for Radiation Distribution in High Radiation Environment by Gamma-ray Image Spectroscopy". Electron-tracking Compton camera (ETCC) has been developed originally for nuclear gamma-ray astronomy, and also applied to medical use as a technology that greatly improves the resolution of conventional Compton camera by measuring three-dimensional tracking of electrons using a gaseous 3-dimensional position detector (so called Time Projection Chamber) in the first stage. In the present study, based on the ETCC that has been developed for medical use, we produce a prototype of light weight ETCC with the emphasis on the operability at the site, and evaluate its practicability by field tests.

Journal Articles

Analysis of intracellular distribution of boron and gadolinium in 9L sarcoma cells using a single-ended accelerator (Micro PIXE)

Endo, Kiyoshi*; Shibata, Yasushi*; Yoshida, Fumiyo*; Nakai, Kei*; Yamamoto, Tetsuya*; Matsumura, Akira*; Ishii, Keizo*; Sakai, Takuro; Sato, Takahiro; Oikawa, Masakazu*; et al.

Proceedings of 11th World Congress on Neutron Capture Therapy (ISNCT-11) (CD-ROM), 2 Pages, 2004/10

Micro PIXE, which is installed in a single end accelerator in JAERI, was used for quantitative analysis of boron and gadolinium distribution in a cell level. The micro beam of 1 $$mu$$m diameter is possible to observe the distribution. In the adjustment procedure of the sample, first is a fix of mylar film by using a glass ring and a bite ring of 2cm diameter. Next the 9L cells were scattered on the washed film, and is cultivated on 37$$^{circ}$$C in medium until they form the mono-layer. After the Gd-BOPTA was added, it incubates for the 24-72 hour on 37$$^{circ}$$C. The film is washed in the THAM liquid, and is directly put on liquid nitrogen. A vacuum drying for 24 hours is conducted in order to fix a film on holder. It is important to uniformly fix the cell in distribution analysis in the cell using Micro PIXE. In recent result, it became possible that the distribution of P, S, Gd, etc. was analyzed. But we could not distinguish whether K and Gd exist in the cell or whether it exists around the cell. It was indicated that these elements was leaked by the reason of cell breaking or other on the cytoplasm.

Journal Articles

Characterization of neutron beams for boron neutron capture therapy; In-air radiobiological dosimetry

Yamamoto, Tetsuya*; Matsumura, Akira*; Yamamoto, Kazuyoshi; Kumada, Hiroaki; Hori, Naohiko; Torii, Yoshiya; Shibata, Yasushi*; Nose, Tadao*

Radiation Research, 160(1), p.70 - 76, 2003/07

 Times Cited Count:13 Percentile:39.42(Biology)

The survival curves and the RBE for the dose components generated in boron neutron capture therapy (BNCT) were determined separately in neutron beams at JRR-4. The surviving fractions of V79 cells with or without 10B were obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal (TNB-2) neutron beam. The cell killing effect of the neutron beam in the presence or absence of 10B was highly dependent on the neutron beam used and depended on the epithermal and fast-neutron content of the beam. The RBEs of the boron capture reaction were 4.07, 2.98 and 1.42, and the RBEs of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50, 2.34 and 2.17 for ENB, TNB-1 and TNB-2, respectively. The approach to the experimental determination of RBEs allows the RBE-weighted dose calculation for each dose component of the neutron beams and contributes to an accurate inter-beam comparison of the neutron beams at the different facilities employed in ongoing and planned BNCT clinical trials.

JAEA Reports

User's manual of a supporting system for treatment planning in boron neutron capture therapy; JAERI computational dosimetry system

Kumada, Hiroaki; Torii, Yoshiya

JAERI-Data/Code 2002-018, 158 Pages, 2002/09

JAERI-Data-Code-2002-018.pdf:30.28MB

A boron neutron capture therapy (BNCT) with epithermal neutron beam is expected to treat effectively for malignant tumor that is located deeply in the brain. It is indispensable to estimate preliminarily the irradiation dose in the brain of a patient in order to perform the epithermal neutron beam BNCT. Thus, the JAERI Computational Dosimetry System (JCDS), which can calculate the dose distributions in the brain, has been developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images and that generates a input data file automaticly for calculation neutron flux and gamma-ray dose distribution in the brain by the Monte Carlo code: MCNP, and that displays the dose distribution on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By treating CT data and MRI data which are medical images, a detail three-dimensional model of patinet's head is able to be made easily. The three-dimensional head image is editable to simulate the state of a head after its surgical processes such as skin flap opening and bone removal for the BNCT with craniotomy that are being performed in Japan. JCDS can provide information for the Patient Setting System to set the patient in an actual irradiation position swiftly and accurately. This report describes basic design and procedure of dosimetry, operation manual, data and library structure for JCDS (ver.1.0)

Journal Articles

Intraoperative boron neutron capture therapy using thermal/epithermal mixed beam

Matsumura, Akira*; Yamamoto, Tetsuya*; Shibata, Yasushi*; Nakai, Kei*; Zhang, T.*; Matsushita, Akira*; Takano, Shingo*; Endo, Kiyoshi*; Akutsu, Hiroyoshi*; Yamamoto, Kazuyoshi; et al.

Research and Development in Neutron Capture Therapy, p.1073 - 1078, 2002/09

Since 1998 to 2002, a new clinical trial of an intraoperative boron neutron capture therapy (IOBNCT) at JRR-4 of Japan Atomic Energy Institute (JAERI) using BSH with mixed thermal/epithermal neutron beam has been accomplished. There have been 9 patients included in this study. The median survival time (MST) in GBM was 19.8 months and 16.8 months in AA. IOBNCT with mixed thermal/epithermal neutron beam provide better primary radiation effect than conventional therapy in selected cases. Our phase I/II clinical trial was effective in local tumor control. Further clinical trial with new design should be performed to prove the efficacy of IOBNCT.

Journal Articles

An Application to Intraoperative BNCT using epithermal neutron of new JRR-4 mode "Epi-12"

Matsushita, Akira*; Yamamoto, Tetsuya*; Matsumura, Akira*; Nose, Tadao*; Yamamoto, Kazuyoshi; Kumada, Hiroaki; Torii, Yoshiya; Kashimura, Takanori*; Otake, Shinichi*

Research and Development in Neutron Capture Therapy, p.141 - 143, 2002/09

A thermal-epithermal mixed beam "Thermal Neutron Beam Mode I" was used in the eleven sessions of boron neutron capture therapy which have been performed at JRR-4 from 1998. We are planning to use an epithermal beam for the treatment of deeper tumors in the next trial of the intraoperative BNCT. In this study, "Epi-12" which was made by putting up a cadmium shutter of "Thermal Neutron Beam Mode I" was investigated for the clinical benefits and safety by epithermal beams. Decrease of fast neutron contamination ratio in Epi-12 mode is the advantage for BNCT, particular in the intraoperative BNCT. Because fast neutron on the brain surface is one of the critical factors in the intraoperative BNCT in which the plain beam directly interacts the normal structures. Furthermore a mixture of mode Epi-12 and Th-12 will provide various dose distribution designs. It may be used as a new method to control the best distribution for individual tumors.

Journal Articles

A Combination use of boron and gadolinium compounds in ${it In vitro}$ NCT trial

Zhang, T.*; Matsumura, Akira*; Yamamoto, Tetsuya*; Yoshida, Fumiyo*; Sakurai, Yoshinori*; Kumada, Hiroaki; Yamamoto, Kazuyoshi; Nose, Tadao*

Research and Development in Neutron Capture Therapy, p.819 - 824, 2002/09

From present study, the irradiation effect by using combination of Boron and Gd, showed various irradiation effects (additive effect, less than additive effect, non additive effect), which depend on Gd concentration. The additive effect will be occurred when using a combination of Gd and Boron with low concentration, however, adding Gd to high concentration will reduce additive effect resulting in less than additive to finally non-additive effect. This result indicate that achieving suitable concentrations of Gd and Boron together in tumors may increase the therapy effect, but achieving excess concentration of Gd with Boron together in tumor may cause negative therapeuitic effect.

JAEA Reports

${it In vitro}$ biological effectiveness of JRR-4 epithermal neutron beam; Experiment under free air beam and in water phantom (Cooperative research)

Yamamoto, Tetsuya*; Yamamoto, Kazuyoshi; Matsumura, Akira*; Kumada, Hiroaki; Kishi, Toshiaki; Hori, Naohiko; Torii, Yoshiya; Horiguchi, Yoji; Nose, Tadao*

JAERI-Research 2002-011, 56 Pages, 2002/05

JAERI-Research-2002-011.pdf:3.17MB

The surviving curve and RBE of dose components generated in boron neutron capture therapy (BNCT) were separately determined in neutron beams at JRR-4. Surviving fraction of V79 cell with or without $$_{10}$$B was obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal neutron beam(TNB-2), which were used or planned to use for clinical trial. The cell killing effect of these beams depended highly on the neutron beam used, according to the epithermal and fast neutron content in the beam. RBE of the boron capture were 3.99$$pm$$0.24, 3.04$$pm$$0.19 and 1.43$$pm$$0.08, RBE of the high-LET dose components based were 2.50$$pm$$0.32, 2.34$$pm$$0.30 and 2.17$$pm$$0.28 for ENB, TNB-1 and TNB-2, respectively. The experimental determination of biological effectiveness factor outlined in this paper is applicable to the dose calculation for each dose component of the neutron beams and contribute to an accurate RBE as comparison with a neutron beam at a different facility employed in ongoing and planned BNCT clinical trials.

JAEA Reports

Proceedings of Neutron Irradiation Technical Meeting on BNCT; March 13, 2000, at JAERI Tokai Research Establishment

Department of Research Reactor

JAERI-Conf 2000-013, 69 Pages, 2000/10

JAERI-Conf-2000-013.pdf:14.75MB

no abstracts in English

9 (Records 1-9 displayed on this page)
  • 1