Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kokabu, Hiroki*; Yoon, S.*; Lee, H.*; Nakajima, Kaoru*; Matsuda, Makoto; Sataka, Masao*; Tsujimoto, Masahiko*; Toulemonde, M.*; Kimura, Kenji*
Nuclear Instruments and Methods in Physics Research B, 460, p.34 - 37, 2019/12
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Nakajima, Kaoru*; Kitayama, Takumi*; Hayashi, Hiroaki*; Matsuda, Makoto; Sataka, Masao*; Tsujimoto, Masahiko*; Toulemonde, M.*; Bouffard, S.*; Kimura, Kenji*
Scientific Reports (Internet), 5, p.13363_1 - 13363_8, 2015/08
Times Cited Count:5 Percentile:40.35(Multidisciplinary Sciences)Mironov, M. I.*; Khudoleev, A. V.*; Kusama, Yoshinori
Plasma Physics Reports, 30(2), p.164 - 168, 2004/02
Times Cited Count:0 Percentile:0.00(Physics, Fluids & Plasmas)High-energy charge-exchange diagnostics can determine the distribution function of fast atoms produced via the neutralization of hydrogen ions by hydrogen-like impurity ions. Deriving the distribution function requires to know the composition and spatial distribution of the target ions in a plasma. A charge-exchange target forms as a result of the interaction between impurity nuclei and beam atoms. Depending on the arrangement of heating beams with respect to the diagnostics, it is necessary to calculate their trajectories. A model which takes into account elementary processes resulting in the ionization equilibrium of the ions of impurities in a specific tokamak configuration is proposed. The model is applied to the JT-60U plasma. Mechanisms for the formation of charge-exchange atomic flows are considered. The relative contributions of different heating injectors to the charge-exchange flow are estimated. Based on the calculated results, a method is proposed for local measurements of the ion distribution function with a stationary analyzer.