検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 5 件中 1件目~5件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

発表言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Enhanced work hardening in ferrite and austenite of duplex stainless steel at 200 K; ${it In situ}$ neutron diffraction study

山下 享介*; 古賀 紀光*; Mao, W.*; Gong, W.; 川崎 卓郎; Harjo, S.; 藤井 英俊*; 梅澤 修*

Materials Science and Engineering A, 941, p.148602_1 - 148602_11, 2025/09

Ferrite-austenite duplex stainless steels offer excellent strength and ductility, making them suitable for extreme environments. In this study, ${it in situ}$ neutron diffraction during tensile testing at 293 K and 200 K was used to investigate stress partitioning and phase-specific deformation. Phase stress was calculated using a texture-compensated method. At both temperatures, ferrite showed higher phase stress than austenite, acting as the harder phase. At 200 K, both phases exhibited increased strength and work hardening. Austenite showed significant stacking fault formation alongside dislocation migration, while ferrite retained its dislocation-based deformation mode, becoming more effective. Stress contributions from both phases were comparable. No martensitic transformation occurred. Strengthening and enhanced work hardening in both phases led to high strength at 200 K, with ductility similar to that at 293 K.

論文

Unique deformation behavior of ultrafine-grained 304 stainless steel at 20 K

Mao, W.*; Gong, W.; 川崎 卓郎; Gao, S.*; 伊東 達矢; 山下 享介*; Harjo, S.; Zhao, L.*; Wang, Q.*

Scripta Materialia, 264, p.116726_1 - 116726_6, 2025/07

 被引用回数:0

An ultrafine-grained 304 austenitic stainless steel exhibited pronounced serrated Luders deformation at 20 K, with stress and temperature oscillations reaching 200 MPa and 20 K. ${it In-situ}$ neutron diffraction and digital image correlation revealed discontinuous Luders band propagation and burst martensite formation. During deformation, austenite phase stress remained lower than at upper yielding, indicating elastic behavior. Notably, martensite phase stress stayed lower than austenite until fracture, likely due to stress relaxation from burst martensitic transformation at 20 K. The low martensite stress delayed brittle fracture until austenite plastically yielded during uniform deformation.

論文

Martensitic transformation-governed Luders deformation enables large ductility and late-stage strain hardening in ultrafine-grained austenitic stainless steel at low temperatures

Mao, W.*; Gao, S.*; Gong, W.; 川崎 卓郎; 伊東 達矢; Harjo, S.; 辻 伸泰*

Acta Materialia, 278, p.120233_1 - 120233_13, 2024/10

 被引用回数:12 パーセンタイル:87.44(Materials Science, Multidisciplinary)

Using a hybrid method of in situ neutron diffraction and digital image correlation, we found that ultrafine-grained 304 stainless steel exhibits Luders deformation after yielding, in which the deformation behavior changes from a cooperation mechanism involving dislocation slip and martensitic transformation to one primarily governed by martensitic transformation, as the temperature decreases from 295 K to 77 K. Such martensitic transformation-governed Luders deformation delays the activation of plastic deformation in both the austenite parent and martensite product, resulting in delayed strain hardening. This preserves the strain-hardening capability for the later stage of deformation, thereby maintaining a remarkable elongation of 29% while achieving a high tensile strength of 1.87 GPa at 77 K.

論文

${it In situ}$ neutron diffraction study of phase stress evolution in a ferrous medium-entropy alloy under low-temperature tensile loading

Bae, J. W.*; Kim, J. G.*; Park, J. M.*; Woo, W.*; Harjo, S.; Kim, H. S.*

Scripta Materialia, 165, p.60 - 63, 2019/05

 被引用回数:40 パーセンタイル:86.66(Nanoscience & Nanotechnology)

Phase stress evolution of face-centered cubic (FCC) and deformation-induced body-centered cubic (BCC) phases was measured in recently developed ferrous medium-entropy alloy. This was done during tensile deformation at -137$$^{circ}$$C using ${it in situ}$ neutron diffraction measurement for the quantitative interpretation of the role of martensitic transformation on the improved low-temperature tensile properties. The strain-hardening rate curve exhibits two-stage hardening behavior, and the phase stress and stress contribution from the BCC phase increases significantly while that from FCC phase decreases during plastic deformation. This is a direct demonstration that BCC phase contributes significantly to the increase in strength and strain hardening.

口頭

Metastable austenitic steel deformation at low temperature

Harjo, S.; 川崎 卓郎; Gong, W.; 相澤 一也; 岩橋 孝明

no journal, , 

Austenitic stainless steel type 304 is well known as a metastable steel that may be transformed to have different crystal structures during plastic deformation leading increase in strength and elongation, i.e. transformation- induced plasticity (TRIP). TRIP in the JIS-SUS304 can be accelerated by decreasing the temperature for the deformation and increasing the strain rate, and the flow stresses are different by varying the temperatures, expecting that the transformation behavior may be different. To describe the relation between the flow stress and the transformation behavior, in situ neutron diffraction experiments during loading of the JIS-SUS304 at low temperatures are performed without any interruption, and time-resolving data will be discussed.

5 件中 1件目~5件目を表示
  • 1