Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Igarashi, Kai*; Onuki, Ryoji*; Sakai, Takaaki*; Kato, Shinya; Matsuba, Kenichi; Kamiyama, Kenji
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08
Ueki, Taro
Journal of Nuclear Science and Technology, 54(3), p.267 - 279, 2017/03
Times Cited Count:7 Percentile:62.15(Nuclear Science & Technology)Analysis framework under material distribution uncertainty is investigated for the Monte Carlo (MC) criticality calculation of continuously mixed media formed via molten core concrete interaction. Deterministic trigonometric functions and randomized Weierstrass functions are utilized to represent the spatially continuous variation. Numerical results indicate that the effective multiplication factor (k) under random spatial variation can depart significantly from the k
of a reference uniform medium. It is also shown that the deterministic modeling provides an upper-bound measure for extreme results from random realizations.
Matsuba, Kenichi; Isozaki, Mikio; Kamiyama, Kenji; Suzuki, Toru; Tobita, Yoshiharu
Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 8 Pages, 2016/10
In order to evaluate the distance for fragmentation of molten core material discharged into the lower sodium plenum during core disruptive accidents in sodium-cooled fast reactors, experiments with simulated molten materials and coolants (water, sodium) was carried out, where an empirical correlation of the distance for fragmentation was developed. The empirical correlation developed by this study showed a good agreement with the measurement results obtained by the present experiments. It was found that in order to well-predict the distance for fragmentation in sodium, thermal phenomena, such as sodium boiling and resultant vapor expansion, needed to be considered.
Matsuba, Kenichi; Isozaki, Mikio; Kamiyama, Kenji; Tobita, Yoshiharu
Journal of Nuclear Science and Technology, 53(5), p.707 - 712, 2016/05
Times Cited Count:11 Percentile:75.73(Nuclear Science & Technology)In order to develop an evaluation method of the distance for fragmentation of molten core material discharged into the sodium plenum, a sodium experiment with visual observation was conducted using an X-ray imaging system. In the current experiments, 0.9 kg of molten aluminum (initial temperature: around 1473 K) was discharged into a sodium pool (initial temperature: 673 K) through a nozzle (inner diameter: 20 mm). Based on the experimental results, the distance for fragmentation of the liquid column was estimated to be 100 mm in the experiments. Through the sodium experiment, useful knowledge was obtained for the future development of an evaluation method of the distance for fragmentation of molten core material. As a next step, sodium experiments using higher-density molten materials will be conducted to enrich the experimental knowledge. Besides, a new semi-empirical correlation will be developed to evaluate more appropriately the distance for fragmentation under CDA conditions.
Matsuba, Kenichi; Kamiyama, Kenji; Toyooka, Junichi; Tobita, Yoshiharu; Zuev, V. A.*; Kolodeshnikov, A. A.*; Vasilyev, Y. S.*
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 6 Pages, 2015/05
To develop a method for evaluating the distance for fragmentation of molten core material discharged into sodium, the particle size distribution of alumina debris obtained in the FR tests was analyzed. The mass median diameters of solidified alumina particles were around 0.4 mm, which are comparable to particle sizes predicted by hydrodynamic instability theories such as Kelvin-Helmholtz instability. However, even though hydrodynamic instability theories predict that particle size decreases with an increase of Weber number, such the dependence of particle size on We was not observed in the FR tests. It can be interpreted that the tendency of measured mass median diameters (i.e., non-dependence on Weber number) suggests that before hydrodynamic instabilities sufficiently grow to induce fragmentation, thermal phenomena such as local coolant vaporization and resultant vapor expansion accelerate fragmentation.
Matsuba, Kenichi; Isozaki, Mikio; Kamiyama, Kenji; Suzuki, Toru; Tobita, Yoshiharu
Proceedings of 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10) (USB Flash Drive), 7 Pages, 2014/12
In order to develop an evaluation method of the distance for fragmentation of molten core material discharged into the sodium plenum, a sodium experiment with visual observation was conducted using an X-ray imaging system. In the current experiments, 0.9 kg of molten aluminum (initial temperature: around 1473 K) was discharged into a sodium pool (initial temperature: 673 K) through a nozzle (inner diameter: 20 mm). Based on the experimental results, the distance for fragmentation of the liquid column was estimated to be 100 mm in the experiments. Through the sodium experiment, useful knowledge was obtained for the future development of an evaluation method of the distance for fragmentation of molten core material. As a next step, sodium experiments using higher-density molten materials will be conducted to enrich the experimental knowledge. Besides, a new semi-empirical correlation will be developed to evaluate more appropriately the distance for fragmentation under CDA conditions.