Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2024-022, 59 Pages, 2024/09
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Investigation of effects of nano interfacial phenomena on dissolution aggregation of alpha nanoparticles by using micro nano technologies" conducted in FY2022. To ensure the safety of retrieval and storage management of nuclear fuel debris generated by the Fukushima Daiichi Nuclear Power Station accident, understanding of dissolution-denaturation behavior of the fuel debris alpha particles is one of the most crucial issues. This research aims to create novel microfluidic real-time measurement device for elucidating dissolution, aggregation, and denaturation processes of metal oxide nanoparticles under various solution environments, and clarify their nano-size and interfacial effects.
Eljamal, R.*; Maamoun, I.; Bensaida, K.*; Yilmaz, G.*; Sugihara, Yuji*; Eljamal, O.*
Renewable and Sustainable Energy Reviews, 158, p.112192_1 - 112192_13, 2022/04
Times Cited Count:38 Percentile:93.84(Green & Sustainable Science & Technology)Itami, Toshio*; Saito, Junichi; Ara, Kuniaki
Metals, 5(3), p.1212 - 1240, 2015/09
Times Cited Count:2 Percentile:3.38(Materials Science, Multidisciplinary)A new kind of suspension liquid was developed by dispersing Ti nanoparticles (10 nm) in liquid Na, which was then determined by TEM (transmission electron microscopy) analysis. The volume fraction was estimated to be 0.0088 from the analyzed Ti concentration (2 at.%) and the densities of Ti and Na. This suspension liquid, Liquid Sodium containing nanoparticles of titanium (LSnanop), shows, despite only a small addition of Ti nanoparticles, many striking features, namely a negative deviation of 3.9% from the ideal solution for the atomic volume, an increase of 17% in surface tension, a decrease of 11% for the reaction heat to water, and the suppression of chemical reactivity to water and oxygen. The decrease in reaction heat to water seems to be derived from the existence of excess cohesive energy of LSnanop. The excess cohesive energy was discussed based on simple theoretical analyses, with particular emphasis on the screening effect. The suppression of reactivity is discussed with the relation to the decrease of heat of reaction to water or the excess cohesive energy, surface tension, the action as a plug of Ti oxide, negative adsorption on the surface of LSnanop, and percolation.
Matsubara, Masakazu*; Yamaki, Tetsuya; Ito, Hisayoshi; Abe, Hiroaki*; Asai, Keisuke*
Japanese Journal of Applied Physics, Part 2, 42(5A), p.L479 - L481, 2003/05
Pulsed laser ablation with a KrF excimer laser was used to prepare fine particles of titanium dioxide (TiO). The ablation in an atmosphere of Ar and O
(5:5) at total pressures of
1 Torr led to the formation of TiO
nanoparticles composed of anatase and rutile structures without any suboxides. The weight fraction of the rutile/anatase crystalline phases was controlled by the pressure of the Ar/O
gas. The TiO
nanoparticles had a spherical shape and their size, ranging from 10 and 14 nm, also appeared to be dependent on the ambient pressure.
Nakagawa, Taichi; Suzuki, Reika*; Matsueda, Makoto; Terashima, Motoki; Horita, Takuma; Oka, Toshitaka; Kitatsuji, Yoshihiro; Takagai, Yoshitaka*
no journal, ,
no abstracts in English
Suzuki, Reika*; Nakagawa, Taichi; Matsueda, Makoto; Terashima, Motoki; Takase, Tsugiko*; Takagai, Yoshitaka*
no journal, ,
no abstracts in English
Nakagawa, Taichi; Suzuki, Reika*; Matsueda, Makoto; Takase, Tsugiko*; Terashima, Motoki; Takagai, Yoshitaka*
no journal, ,
no abstracts in English
Maamoun, I.; Tokunaga, Kohei; Falyouna, O.*; Eljamal, O.*; Tanaka, Kazuya
no journal, ,
Nakagawa, Taichi; Matsueda, Makoto; Terashima, Motoki; Takagai, Yoshitaka*
no journal, ,
no abstracts in English