Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Kimura, Atsushi
Journal of Nuclear Science and Technology, 11 Pages, 2023/00
Times Cited Count:0The thermal-neutron capture cross section () and resonance integral (I
) for
Nb among nuclides for decommissioning were measured by an activation method and the half-life of
Nb by mass analysis. Niobium-93 samples were irradiated with a hydraulic conveyer installed in the research reactor in Institute for Integral Radiation and Nuclear Science, Kyoto University. Gold-aluminum, cobalt-aluminum alloy wires were used to monitor thermal-neutron fluxes and epi-thermal Westcott's indexes at an irradiation position. A 25-
m-thick gadolinium foil was used to sort out reactions ascribe to thermal-and epi-thermal neutrons. Its thickness provided a cut-off energy of 0.133 eV. In order to attenuate radioactivity of
Ta due to impurities, the Nb samples were cooled for nearly 2 years. The induced radio activity in the monitors and Nb samples were measured by
-ray spectroscopy. In analysis based on Westcott's convention, the
and I
values were derived as 1.11
0.04 barn and 10.5
0.6 barn, respectively. After the
-ray measurements, mass analysis was applied to the Nb sample to obtain the reaction rate. By combining data obtained by both
-ray spectroscopy and mass analysis, the half-life of
Nb was derived as (2.00
0.15)
10
years.
Hashimoto, Shunsuke*; Nakajima, Kenji; Kikuchi, Tatsuya*; Kamazawa, Kazuya*; Shibata, Kaoru; Yamada, Takeshi*
Journal of Molecular Liquids, 342, p.117580_1 - 117580_8, 2021/11
Times Cited Count:2 Percentile:28.41(Chemistry, Physical)Quasi-elastic neutron scattering (QENS) and pulsed-field-gradient nuclear magnetic resonance (PFGNMR) analyses of a nanofluid composed of silicon dioxide (SiO) nanoparticles and a base fluid of ethylene glycol aqueous solution were performed. The aim was to elucidate the mechanism increase in the thermal conductivity of the nanofluid above its theoretical value. The obtained experimental results indicate that SiO
particles may decrease the self-diffusion coefficient of the liquid molecules in the ethylene glycol aqueous solution because of their highly restricted motion around these nanoparticles. At a constant temperature, the thermal conductivity increases as the self-diffusion coefficient of the liquid molecules decreases in the SiO
nanofluids.
Harada, Hideo
Applied Sciences (Internet), 11(14), p.6558_1 - 6558_20, 2021/07
Times Cited Count:0 Percentile:0(Chemistry, Multidisciplinary)For accuracy improvement of neutron activation analysis and neutron capture cross section, bias effects are investigated on g- and s-factors in the Westcott convention. As origins of biases, a joining function shape, neutron temperature and sample temperature, have been investigated. Biases are quantitatively deduced for two 1/v isotopes (Au,
Co) and six non-1/v isotopes (
Am,
Eu,
Rh,
In,
Hf,
Ra). The s-factor calculated with a joining function deduced recently by a detailed Monte Carlo simulation is compared to s-factors calculated with traditional joining functions by Westcott. The results show the bias induced by sample temperature is small as the order of 0.1% for g-factor and the order of 1% for s-factor. On the other hand, biases induced by a joining function shape for s-factor depend significantly on both isotopes and neutron temperature. As the result, reaction rates are also affected significantly as well. The bias size on reaction rate is given in the case of epithermal neutron index r = 0.1, for the eight isotopes.
Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Kimura, Atsushi
Journal of Nuclear Science and Technology, 58(3), p.259 - 277, 2021/03
Times Cited Count:2 Percentile:16.13(Nuclear Science & Technology)Research and development were made for accuracy improvement of neutron capture cross section data on Am among minor actinides. First, the emission probabilities of decay
rays were obtained with high accuracy, and the amount of the ground state of
Am produced by reactor neutron irradiation of
Am was examined by
-ray measurement. Next, the total amount of isomer and ground states was examined by
-ray measurement. Thermal-neutron capture cross sections and resonance integrals were derived both for the
Am(n,
)
Am and for
Am(n,
)
Am reactions.
Harada, Hideo; Takayama, Naoki; Komeda, Masao
Journal of Physics Communications (Internet), 4(8), p.085004_1 - 085004_17, 2020/08
A new convention of epithermal neutron spectrum is formulated for improving accuracy of resonance integrals. The new type function is proposed as an approximating function of epithermal neutron spectrum based on calculations by the state-of-art Monte Carlo code MVP-3. Bias effects on determination of resonance integrals due to utilizing approximating functions of the traditional types and the new type are compared. The other bias effect is also investigated, which is caused by neglecting position dependence of a neutron spectrum inside an irradiation capsule. For demonstrating the bias effects due to these assumptions on neutron spectrum quantitatively in a practical case, the thermal neutron-capture cross section and resonance integral of Cs measured at a research reactor JRR-3 are re-evaluated. A superior property of the proposed new convention is discussed. The experimental method is proposed to determine the new shape factor
introduced in the convention by a combinational use of triple flux monitors (
Au,
Co and
Zr), and its analytical methodology is formulated.
Nakamura, Shoji; Endo, Shunsuke; Kimura, Atsushi; Shibahara, Yuji*
KURNS Progress Report 2019, P. 132, 2020/08
Research and development were made for accuracy improvement of neutron capture cross section data on Am among minor actinides. First, the emission probabilities of decay
rays were obtained with high accuracy, and the amount of the ground state of
Am produced by reactor neutron irradiation of
Am was examinded by
-ray measurement. Next, the total amount of isomer and ground states was examoned by
-ray measurement.
Nakamura, Shoji; Shibahara, Yuji*; Kimura, Atsushi; Iwamoto, Osamu; Uehara, Akihiro*; Fujii, Toshiyuki*
Journal of Nuclear Science and Technology, 57(4), p.388 - 400, 2020/04
Times Cited Count:3 Percentile:25.74(Nuclear Science & Technology)The thermal-neutron capture cross-section () and resonance integral(I
) were measured for the
Cs(n,
)
Cs reaction by an activation method and mass spectrometry. We used
Cs contained as an impurity in a normally available
Cs standard solution. An isotope ratio of
Cs and
Cs in a standard
Cs solution was measured by mass spectrometry to quantify
Cs. The analyzed
Cs samples were irradiated at the hydraulic conveyer of the research reactor in Institute for Integral Radiation and Nuclear Science, Kyoto University. Wires of Co/Al and Au/Al alloys were used as neutron monitors to measure thermal-neutron fluxes and epi-thermal Westcott's indices at an irradiation position. A gadolinium filter was used to measure the
, and a value of 0.133 eV was taken as the cut-off energy. Gamma-ray spectroscopy was used to measure induced activities of
Cs,
Cs and monitor wires. On the basis of Westcott's convention, the
and I
values were derived as 8.57
0.25 barn, and 45.3
3.2 barn, respectively. The
obtained in the present study agreed within the limits of uncertainties with the past reported value of 8.3
0.3 barn.
Ma, F.; Kopecky, S.*; Alaerts, G.*; Harada, Hideo; Heyse, J.*; Kitatani, Fumito; Noguere, G.*; Paradela, C.*; alamon, L.*; Schillebeeckx, P.*; et al.
Journal of Analytical Atomic Spectrometry, 35(3), p.478 - 488, 2020/03
Times Cited Count:2 Percentile:27.46(Chemistry, Analytical)Nakamura, Shoji; Kitatani, Fumito; Kimura, Atsushi; Uehara, Akihiro*; Fujii, Toshiyuki*
Journal of Nuclear Science and Technology, 56(6), p.493 - 502, 2019/06
Times Cited Count:5 Percentile:56.26(Nuclear Science & Technology)The thermal-neutron capture cross-section()and resonance integral(I
) were measured for the
Np(n,
)
Np reaction by an activation method. A method with a Gadolinium filter, which is similar to the Cadmium difference method, was used to measure the
with paying attention to the first resonance at 0.489 eV of
Np, and a value of 0.133 eV was taken as a cut-off energy. Neptunium-237 samples were irradiated at the pneumatic tube of the Kyoto University Research Reactor in Institute for Integral Radiation and Nuclear Science, Kyoto University. Wires of Co/Al and Au/Al alloys were used as monitors to determine thermal-neutron fluxes and epi-thermal Westcott's indices at an irradiation position. A
-ray spectroscopy was used to measure activities of
Np,
Np and neutron monitors. On the basis of Westcott's convention, the
and I
values were derived as 186.9
6.2 barn, and 1009
90 barn, respectively.
Koizumi, Mitsuo
Proceedings of 41st ESARDA Annual Meeting (Internet), p.260 - 267, 2019/05
Kitatani, Fumito; Tsuchiya, Harufumi; Toh, Yosuke; Hori, Junichi*; Sano, Tadafumi*; Takahashi, Yoshiyuki*; Nakajima, Ken*
KURRI Progress Report 2017, P. 99, 2018/08
Tsuchiya, Harufumi; Kitatani, Fumito; Toh, Yosuke; Paradela, C.*; Heyse, J.*; Kopecky, S.*; Schillebeeckx, P.*
Proceedings of INMM 59th Annual Meeting (Internet), 6 Pages, 2018/07
Ichihara, Akira
JAEA-Conf 2017-001, p.103 - 108, 2018/01
In the Nuclear Data Center of Japan Atomic Energy Agency (JAEA-NDC), we are engaged in the evaluation activity for the next version of the Japanese Evaluated Nuclear Data Library, JENDL-4.0. Zirconium is an important structural material in nuclear reactors, and zircaloys are being employed in fuel rods. Also, Zr is a long-lived fission product (LLFP) with a half-life of 1.61
10
years. At present we are investigating resonance parameters of Zr isotopes using experimental data published after the evaluation of JENDL-4.0. Through this work, a negative resonance of
Zr in JENDL-4.0 was removed to reproduce the J-PARC/MLF/ANRRI experiment. The resonance parameters for other natural Zr isotopes will be altered by adopting the data obtained at CERN n-TOF experiments.
Kitatani, Fumito; Tsuchiya, Harufumi; Koizumi, Mitsuo; Takamine, Jun; Hori, Junichi*; Sano, Tadafumi*
EPJ Web of Conferences, 146, p.09032_1 - 09032_3, 2017/09
Times Cited Count:0 Percentile:0.08Koizumi, Mitsuo; Harada, Hideo; Schillebeeckx, P.*
Nihon Genshiryoku Gakkai-Shi ATOMO, 58(9), p.563 - 567, 2016/09
no abstracts in English
Tsuchiya, Harufumi; Koizumi, Mitsuo; Kitatani, Fumito; Kureta, Masatoshi; Harada, Hideo; Seya, Michio; Heyse, J.*; Kopecky, S.*; Mondelaers, W.*; Paradela, C.*; et al.
Proceedings of 37th ESARDA Annual Meeting (Internet), p.846 - 851, 2015/08
One of non-destructive techniques using neutron resonance reaction is neutron resonance transmission analysis (NRTA). We are presently developing a new active neutron non-destructive method including NRTA in order to detect and quantify special nuclear materials (SNMs) in nuclear fuels containing MA. We aim at applying the technique to not only particle-like debris but also other materials in high radiation field. For this aim, we make use of fruitful knowledge of neutron resonance densitometry (NRD) that was developed for particle-like debris in melted fuel. NRTA detects and quantifies SNMs by means of analyzing a neutron transmission spectrum via a resonance shape analysis. In this presentation, we explain the basic of NRTA and its role in the active neutron technique. Then, with knowledge obtained in the development of NRD, we discuss items to be investigated for NRTA in our active neutron technique.
Koizumi, Mitsuo; Tsuchiya, Harufumi; Kitatani, Fumito; Kureta, Masatoshi; Seya, Michio; Harada, Hideo; Heyse, J.*; Kopecky, S.*; Mondelaers, W.*; Paradela, C.*; et al.
Proceedings of 37th ESARDA Annual Meeting (Internet), p.852 - 858, 2015/08
Harada, Hideo; Kimura, Atsushi; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi; Becker, B.*; Kopecky, S.*; Schillebeeckx, P.*
Journal of Nuclear Science and Technology, 52(6), p.837 - 843, 2015/06
Times Cited Count:4 Percentile:35.41(Nuclear Science & Technology)Seya, Michio; Kobayashi, Naoki; Naoi, Yosuke; Hajima, Ryoichi; Soyama, Kazuhiko; Kureta, Masatoshi; Nakamura, Hironobu; Harada, Hideo
Book of Abstracts, Presentations and Papers of Symposium on International Safeguards; Linking Strategy, Implementation and People (Internet), 8 Pages, 2015/03
JAEA-ISCN has been implementing basic development programs of the advanced NDA technologies for nuclear material (NM) since 2011JFY (Japanese Fiscal Year), which are (1) NRF (Nuclear resonance fluorescence) NDA technology using laser Compton scattered (LCS) -rays (intense mono-energetic
-rays), (2) Alternative to
He neutron detection technology using ZnS/B
O
ceramic scintillator, and (3) NRD (Neutron resonance densitometry) using NRTA (Neutron resonance transmission analysis) and NRCA (Neutron resonance capture analysis). These programs are going to be finished in 2014JFY and have demonstration tests in February - March 2015.
Katabuchi, Tatsuya*; Matsuhashi, Taihei*; Terada, Kazushi; Igashira, Masayuki*; Mizumoto, Motoharu*; Hirose, Kentaro; Kimura, Atsushi; Iwamoto, Nobuyuki; Hara, Kaoru*; Harada, Hideo; et al.
Physical Review C, 91(3), p.037603_1 - 037603_5, 2015/03
Times Cited Count:8 Percentile:52.89(Physics, Nuclear)