Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Critical assemblies in JAEA and the role of new STACY

Sono, Hiroki; Izawa, Kazuhiko; Yoritsune, Tsutomu; Suyama, Kenya; Tonoike, Kotaro

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 7 Pages, 2023/10

Japan Atomic Energy Agency (JAEA) has constructed and operated nine critical assemblies. Of these nine facilities as of 2023, four have already been dismantled, four are under decommissioning, and only STACY is active but under temporally shutdown. STACY is scheduled to restart in 2024 after core modification from a "critical assembly using uranium nitrate solution fuel" to a "general-purpose critical assembly using uranium fuel rods and light-water moderator." The immediate objective of new STACY is to acquire criticality data for fuel debris removal from the damaged reactors in Fukushima-Daiichi Nuclear Power Plant. After the critical experiment program regarding fuel debris, the new STACY is expected to be used for various R&D on next-generation power reactors and others. In addition, the new STACY will serve as an educational and training reactor. These activities are useful not only for Japan but also for international collaborative research and joint use.

Journal Articles

Criticality configuration design methodology applied to the design of fuel debris experiment in the new STACY

Gunji, Satoshi; Tonoike, Kotaro; Clavel, J.-B.*; Duhamel, I.*

Journal of Nuclear Science and Technology, 58(1), p.51 - 61, 2021/01

 Times Cited Count:2 Percentile:19.64(Nuclear Science & Technology)

The new critical assembly STACY will be able to contribute to the validation of criticality calculations related to the fuel debris. The experimental core designs are in progress in the frame of JAEA/IRSN collaboration. This paper presents the method applied to optimize the design of the new STACY core to measure the criticality characteristics of pseudo fuel debris that simulated Molten Core Concrete Interaction (MCCI) of the fuel debris. To ensure that a core configuration is relevant for code validation, it is important to evaluate the reactivity worth of the main isotopes of interest and their k$$_{rm eff}$$ sensitivity to their cross sections. In the case of the fuel debris described in this study, especially for the concrete composition, silicon is the nucleus with the highest k$$_{rm eff}$$ sensitivity to the cross section. For this purpose, some parameters of the core configuration, as for example the lattice pitches or the core dimensions, were adjusted using optimization algorithm to find efficiently the optimal core configurations to obtain high sensitivity of silicon capture cross section. Based on these results, realistic series of experiments for fuel debris in the new STACY could be defined to obtain an interesting feedback for the MCCI. This methodology is useful to design other experimental conditions of the new STACY.

2 (Records 1-2 displayed on this page)
  • 1