Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hotta, Akitoshi*; Akiba, Miyuki*; Morita, Akinobu*; Konovalenko, A.*; Vilanueva, W.*; Bechta, S.*; Komlev, A.*; Thakre, S.*; Hoseyni, S. M.*; Skld, P.*; et al.
Journal of Nuclear Science and Technology, 57(4), p.353 - 369, 2020/04
Times Cited Count:14 Percentile:68.28(Nuclear Science & Technology)Lambertin, D.*; Davy, C. A.*; Hauss, G.*; Planel, B.*; Marchand, B.*; Cantarel, V.
Proceedings of 1st International Conference on Innovation in Low-Carbon Cement and Concrete Technology (ILCCC 2019) (USB Flash Drive), 4 Pages, 2019/06
Composite materials made of geopolymer (GP) cement and organic liquids are useful to synthetize porosity-controlled media, for the management of radioactive organic liquid waste, or as phase change materials (PCM). Indeed, GP cements are able to integrate huge amounts of organic oils by direct emulsion in the fresh paste. The emulsion (GEOIL) remains stable during GP hardening. In this contribution, by using 3D X Ray micro Computed Tomography (micro CT) with a voxel size of 1 micron, we investigate the effect of formulation parameters (oil proportion, Si/Al molar ratio, surfactant) on the 3D oil droplet structure of GEOIL pastes. Samples are emulsified in the fresh state, and imaged in the hardened state. Porosity, oil droplet size distribution and mean distance between droplets are all determined quantitatively. It is observed that the presence of surfactant provides significantly smaller oil droplets. The increase in Si/Al ratio also decreases the oil droplet sizes, but to a lesser extent.
Fujimura, Takashi; Kaetsu, Isao
JAERI-M 82-063, 10 Pages, 1982/06
no abstracts in English