Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 221

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Measurement of nuclide production cross-sections in high-energy proton-induced spallation reactions at J-PARC

Nakano, Keita; Matsuda, Hiroki*; Meigo, Shinichiro; Iwamoto, Hiroki; Takeshita, Hayato*; Maekawa, Fujio

JAEA-Research 2021-014, 25 Pages, 2022/03

JAEA-Research-2021-014.pdf:2.1MB

For the development of accelerator-driven transmutation system (ADS), measurement of nuclide production cross-sections in proton-induced reactions on $$^9$$Be, C, $$^{27}$$Al, $$^{45}$$Sc, and V have been performed. The measured data are compared with the calculations by the latest nuclear reaction models and with the nuclear data library to investigate the reproducibilities.

Journal Articles

Design and beam dynamic studies of a 30-MW superconducting linac for an accelerator-driven subcritical system

Yee-Rendon, B.; Kondo, Yasuhiro; Maekawa, Fujio; Meigo, Shinichiro; Tamura, Jun

Physical Review Accelerators and Beams (Internet), 24(12), p.120101_1 - 120101_17, 2021/12

The Japan Atomic Energy Agency (JAEA) is working on the research and development of a 30-MW continuous wave (CW) proton linear accelerator (linac) for the JAEA accelerator-driven subcritical system (ADS) proposal. The linac will accelerate a 20 mA proton beam to 1.5 GeV, using mainly superconducting cavities. The main challenge for an ADS accelerator is the high reliability required to prevent thermal stress in the subcritical reactor; thus, we pursue a robust lattice to achieve stable operation. To this end, the beam optics design reduces the emittance growth and the beam halo through the superconducting part of the linac. First, we simulated an ideal machine without any errors to establish the operation conditions of the beam. Second, we applied element errors and input beam errors to estimate the tolerance of the linac design. Finally, we implemented a correction scheme to increase the lattice tolerance by reducing the beam centroid offset on the transverse plane. Massive multiparticle simulations and a cumulative statistic of 1$$times$$10$$^{8}$$ macroparticles have shown that the JAEA-ADS linac can operate with less than 1 W/m beam losses in error scenarios.

Journal Articles

Initiatives to address the lifetime improvement of HBC stripper foil for 3GeV synchrotron of J-PARC

Yoshimoto, Masahiro; Nakanoya, Takamitsu; Yamazaki, Yoshio; Saha, P. K.; Kinsho, Michikazu; Yamamoto, Shunya*; Okazaki, Hiroyuki*; Taguchi, Tomitsugu*; Yamada, Naoto*; Yamagata, Ryohei*

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.850 - 854, 2021/10

no abstracts in English

Journal Articles

Design of the MEBT for the JAEA-ADS Project

Yee-Rendon, B.; Kondo, Yasuhiro; Maekawa, Fujio; Meigo, Shinichiro; Tamura, Jun

Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.790 - 792, 2021/08

The Medium Energy Beam Transport (MEBT) will transport a CW proton beam with a current of 20 mA and energy of 2.5 MeV from the exit of the normal conducting Radiofrequency Quadrupole (RFQ) to the superconducting Half-Wave resonator (HWR) section. The MEBT must provide a good matching between the RFQ and HWR, effective control of the emittance growth and the halo formation, enough space for all the beam diagnostics devices, among others. This work reports the first lattice design and the beam dynamics studies for the MEBT of the JAEA-ADS.

Journal Articles

Vacuum tube operation tuning for a high intensity beam acceleration in J-PARC RCS

Yamamoto, Masanobu; Okita, Hidefumi; Nomura, Masahiro; Shimada, Taihei; Tamura, Fumihiko; Furusawa, Masashi*; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Sugiyama, Yasuyuki*; et al.

Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.1884 - 1886, 2021/08

Tetrode vacuum tubes in J-PARC RCS are used under a reduced filament voltage condition compared with the rating value to prolong the tube lifetime. For the first time after 60,000 hour of operation in the RCS, one tube has reached the end of its life in 2020. Therefore, the reduced filament voltage works well because the tube has been running beyond an expected lifetime suggested by the tube manufacturer. However, the reduced filament voltage decreased the electron emission from the filament. Although the large amplitude of the anode current is necessary for the high intensity beam acceleration to compensate a wake voltage, a solid-state amplifier to drive a control grid circuit almost reaches the output power limit owing to the poor electron emission from the filament. We changed the filament voltage reduction rate from 15% to 5%. The required power of the solid-state amplifier was fairly reduced, whereas the accelerated beam power remained the same. We describe the measurement results of the vacuum tube parameters in terms of the filament voltage tuning.

Journal Articles

Nuclide production cross sections of Ni and Zr irradiated with 0.4-, 1.3-, 2.2-, and 3.0-GeV protons

Takeshita, Hayato; Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Hiroki; Maekawa, Fujio; Watanabe, Yukinobu*

JPS Conference Proceedings (Internet), 33, p.011045_1 - 011045_6, 2021/03

To improve accuracy of nuclear design of accelerator driven nuclear transmutation systems, nuclide production cross sections on Ni and Zr, which were candidate materials to be used in ADS, were measured for GeV energy protons. The measured results were compared with PHITS calculations and JENDL/HE-2007.

Journal Articles

Measurement of thick target neutron yield at 180$$^{circ}$$ for a mercury target induced by 3-GeV protons

Matsuda, Hiroki; Iwamoto, Hiroki; Meigo, Shinichiro; Takeshita, Hayato*; Maekawa, Fujio

Nuclear Instruments and Methods in Physics Research B, 483, p.33 - 40, 2020/11

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

A thick target neutron yield for a mercury target at an angle of 180$$^{circ}$$ from the incident beam direction is measured with the time-of-flight method using a 3-GeV proton beam at the Japan Proton Accelerator Research Complex (J-PARC). Comparing the experimental result with a Monte Carlo particle transport simulation by the Particle and Heavy Ion Transport code System (PHITS) shows that there are apparent discrepancies. We find that this trend is consistent with an experimental result of neutron-induced re- action rates obtained using indium and niobium activation foils. Comparing proton-induced neutron-production double-differential cross-sections for a lead target at backward directions between the PHITS calculation and experimental data suggests that the dis- crepancies for our experiments would be linked to the neutron production calculation around 3 GeV by the PHITS spallation model and/or the calculation of nonelastic cross-sections around 3 GeV in the particle transport simulation.

Journal Articles

Measurement of displacement cross-sections of copper and iron for proton with kinetic energies in the range 0.4 - 3 GeV

Matsuda, Hiroki; Meigo, Shinichiro; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

Journal of Nuclear Science and Technology, 57(10), p.1141 - 1151, 2020/10

 Times Cited Count:3 Percentile:76.41(Nuclear Science & Technology)

To estimate the structural damages of materials in accelerator facilities, displacement per atom (dpa) is widely employed as a damage index, calculated based on the displacement cross-section obtained using a calculation model. Although dpa is applied as standard, the experimental data of the displacement cross-section for a proton in the energy region above 20 MeV are scarce. Among the calculation models, difference of about factor 8 exist, so that the experimental data of the cross-section are crucial to validate the model. To obtain the displacement cross-section, we conducted experiments at J-PARC. The displacement cross-section of copper and iron was successfully obtained for a proton projectile with the kinetic energies, 0.4 - 3 GeV. The results were compared with those obtained using the widely utilized Norgertt-Robinson-Torrens (NRT) model and the athermal-recombination-corrected (arc) model based on molecular dynamics. It was found that the NRT model overestimates the present displacement cross-section by 3.5 times. The calculation results obtained using with the arc model based on the Nordlund parameter show remarkable agreement with the experimental data. It can be concluded that the arc model must be employed for the dpa calculation for the damage estimation of copper and iron.

Journal Articles

Cavity and optics design of the accelerator for the JAEA-ADS project

Yee-Rendon, B.; Tamura, Jun; Kondo, Yasuhiro; Hasegawa, Kazuo; Maekawa, Fujio; Meigo, Shinichiro; Oguri, Hidetomo

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.107 - 111, 2019/07

JAEA Reports

Assessment report on research and development activities in FY 2018; Activity "Research and development on J-PARC" (Interim report)

J-PARC Center

JAEA-Evaluation 2019-003, 52 Pages, 2019/06

JAEA-Evaluation-2019-003.pdf:6.61MB

Evaluation Committee of Research Activities for J-PARC for interim assessment of Japan Proton Accelerator Research Complex evaluated the management and research activities of J-PARC center on the explanatory documents and oral presentations during the period from April 2015 to December 2018. This report summarizes the results of the assessment by the Committee with the Committee report attached.

Journal Articles

Vacuum tube operation analysis for 1.2 MW beam acceleration in J-PARC RCS

Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Tamura, Fumihiko; Furusawa, Masashi*; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Yoshii, Masahito*

Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.2017 - 2019, 2019/06

J-PARC RCS has successfully accelerated 1 MW proton beam, and we have considered acceleration with the next target being 1.2 MW. An issue for 1.2 MW beam acceleration is the rf system. The present anode power supply is limited by its output current, and the vacuum tube amplifier suffers from an unbalance of the anode voltage swing, arising from the combination of multi-harmonic rf driving and push-pull operation. We have investigated the mitigation of the maximum anode currents and unbalanced tubes by choosing appropriate circuit parameters of the rf cavity with tube amplifier. We describe the analysis results of the vacuum tube operation for 1.2 MW beam acceleration in the RCS.

Journal Articles

Conceptual design of a single-ended MA cavity for J-PARC RCS upgrade

Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Tamura, Fumihiko; Furusawa, Masashi*; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Yoshii, Masahito*

Journal of Physics; Conference Series, 1067, p.052014_1 - 052014_6, 2018/10

 Times Cited Count:2 Percentile:77.73

The J-PARC RCS employs Magnetic Alloy (MA) loaded cavities. The RF power is fed by vacuum tubes in push-pull operation. We realize multi-harmonic RF driving and beam loading compensation thanks to the broadband characteristics of the MA. However, the push-pull operation has disadvantages in multi-harmonics. An unbalance of the anode voltage swing remarkably appears at very high intensity beam acceleration. We propose a single-ended MA cavity for the RCS beam power upgrade, where no unbalance arises intrinsically.

Journal Articles

Proton-induced activation cross section measurement for aluminum with proton energy range from 0.4 to 3 GeV at J-PARC

Matsuda, Hiroki; Meigo, Shinichiro; Iwamoto, Hiroki

Journal of Nuclear Science and Technology, 55(8), p.955 - 961, 2018/08

 Times Cited Count:1 Percentile:17.98(Nuclear Science & Technology)

We have started an experimental program to measure activation cross sections systematically in the proton-induced spallation reaction in structural materials commonly used in high-intensity proton accelerator-based facilities, such as Japan Proton Accelerator Research Complex (J-PARC). As the first step of the program, aluminum (Al) was chosen to verify the adequacy of the measurement technique implemented in a J-PARC proton beam environment because data of Al have been relatively well studied both by experimental measurement and simulation. Activation cross sections of $$^{7}$$Be, $$^{22}$$Na, and $$^{24}$$Na in Al were measured at proton energy points from 0.4, 1.3, 2.2 to 3.0 GeV, which could be delivered smoothly from the synchrotron. The validity of experimental data has been verified by introducing an effective proton numbers determination procedure. We compared the measured data with existing experimental data, the evaluated data (JENDL-HE/2007), and the calculations with several intra-nuclear cascade models by the Particle and Heavy Ion Transport code System (PHITS) code. Although the experimental data agreed with JENDL-HE/2007, the calculations underestimated about 40%. This could come from the evaporation model (generalized evaporation model) being implemented in the PHITS code. We found that the calculations agreed with the experimental data by an upgraded PHITS code.

Journal Articles

Pulse-by-pulse switching of operational parameters in J-PARC 3-GeV RCS

Hotchi, Hideaki; Watanabe, Yasuhiro; Harada, Hiroyuki; Okabe, Kota; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yoshimoto, Masahiro

Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.1041 - 1044, 2018/06

Journal Articles

Performance and status of the J-PARC accelerators

Hasegawa, Kazuo; Hayashi, Naoki; Oguri, Hidetomo; Yamamoto, Kazami; Kinsho, Michikazu; Yamazaki, Yoshio; Naito, Fujio; Koseki, Tadashi; Yamamoto, Noboru; Yoshii, Masahito

Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.1038 - 1040, 2018/06

JAEA Reports

Safety design report on J-PARC Transmutation Physics Experimental Facility (TEF-P)

Partitioning and Transmutation Technology Division, Nuclear Science and Engineering Center

JAEA-Technology 2017-033, 383 Pages, 2018/02

JAEA-Technology-2017-033.pdf:28.16MB

JAEA is pursuing research and development (R&D) on volume reduction and mitigation of degree of harmfulness of high-level radioactive waste. Construction of Transmutation Experimental Facility (TEF) is under planning as one of the second phase facilities in the Japan Proton Accelerator Complex (J-PARC) program to promote R&D on the transmutation technology with using accelerator driven systems (ADS). The TEF consists of two facilities: ADS Target Test Facility (TEF-T) and Transmutation Physics Experimental Facility (TEF-P). Development of spallation target technology and study on target materials are to be conducted in TEF-T with impinging a high intensity proton beam on a liquid lead-bismuth eutectic target. Whereas in TEF-P, by introducing a proton beam to minor actinide loaded cores, reactor physical properties of the cores are to be studied, and operation experiences of ADS are to be acquired. This report summarizes results of safety design for establishment permit of one of two TEF facilities, TEF-P.

Journal Articles

Measurement of thermal deformation of magnetic alloy cores of radio frequency cavities in 3-GeV rapid-cycling synchrotron of Japan Proton Accelerator Research Complex

Shimada, Taihei; Nomura, Masahiro; Tamura, Fumihiko; Yamamoto, Masanobu; Sugiyama, Yasuyuki*; Omori, Chihiro*; Hasegawa, Katsushi*; Hara, Keigo*; Yoshii, Masahito*

Nuclear Instruments and Methods in Physics Research A, 875, p.92 - 103, 2017/12

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

Journal Articles

Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex, 1; Pulsed spallation neutron source

Takada, Hiroshi; Haga, Katsuhiro; Teshigawara, Makoto; Aso, Tomokazu; Meigo, Shinichiro; Kogawa, Hiroyuki; Naoe, Takashi; Wakui, Takashi; Oi, Motoki; Harada, Masahide; et al.

Quantum Beam Science (Internet), 1(2), p.8_1 - 8_26, 2017/09

At the Japan Proton Accelerator Research Complex (J-PARC), a pulsed spallation neutron source provides neutrons with high intensity and narrow pulse width to promote researches on a variety of science in the Materials and life science experimental facility. It was designed to be driven by the proton beam with an energy of 3 GeV, a power of 1 MW at a repetition rate of 25 Hz, that is world's highest power level. A mercury target and three types of liquid para-hydrogen moderators are core components of the spallation neutron source. It is still on the way towards the goal to accomplish the operation with a 1 MW proton beam. In this paper, distinctive features of the target-moderator-reflector system of the pulsed spallation neutron source are reviewed.

Journal Articles

J-PARC transmutation experimental facility program and situation of the world

Maekawa, Fujio; Sasa, Toshinobu

Enerugi Rebyu, 37(9), p.15 - 18, 2017/08

Accelerator driven nuclear transmutation systems (ADS) are under development for reducing nuclear waste. The J-PARC Transmutation Experimental Facility program and situation of the world for the ADS development are introduced.

Journal Articles

Performance and status of the J-PARC accelerators

Hasegawa, Kazuo; Hayashi, Naoki; Oguri, Hidetomo; Yamamoto, Kazami; Kinsho, Michikazu; Yamazaki, Yoshio; Naito, Fujio*; Koseki, Tadashi*; Yamamoto, Noboru*; Hori, Yoichiro*

Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.2290 - 2293, 2017/06

The J-PARC is a high intensity proton facility and the accelerator consists of a 400 MeV linac, a 3 GeV Rapid Cycling Synchrotron (RCS) and a 30 GeV Main Ring Synchrotron (MR). We have taken many hardware upgrades such as front end replacement and energy upgrade at the linac, vacuum improvement, collimator upgrade, etc. The beam powers for the neutrino experiment and hadron experiment from the MR have been steadily increased by tuning and reducing beam losses. The designed 1 MW equivalent beam was demonstrated and user program was performed at 500 kW from the RCS to the neutron and muon experiments. We have experienced many failures and troubles, however, to impede full potential and high availability. In this report, operational performance and status of the J-PARC accelerators are presented.

221 (Records 1-20 displayed on this page)