Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*
JAEA-Review 2022-008, 116 Pages, 2022/06
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the sintering solidification method for spent zeolite to long-term stabilization" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to develop a new sintering solidification method in which glass is added as a binder to spent zeolite which is adsorbed radionuclides such as Cs and the nuclides are immobilized by sintering them. In this project, the optimum conditions for sintering solidification and the basic performance of the sintered solidified body will be evaluated by cold tests, and they will be demonstrated by hot tests.
Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*
JAEA-Review 2020-049, 78 Pages, 2021/01
JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization" conducted in FY2019.
Kitamura, Akira; Yoshida, Yasushi*; Goto, Takahiro*; Shibutani, Sanae*
Genshiryoku Bakkuendo Kenkyu (CD-ROM), 27(2), p.58 - 71, 2020/12
Evaluation and estimation of solubility values are required for a performance assessment of geological disposal of high-level radioactive and TRU wastes. Selection of solubility-limiting solid phases (SSPs) that control the solubility of radionuclides is necessary for the evaluation and estimation of solubility values. The authors have developed a methodology for selection of the SSP through a calculation of saturation indices (SIs) using thermodynamic database to show a transparent procedure for the selection. Literature survey should be performed to confirm decision of the SSP from candidate SSPs which generally have larger SIs from realistic point of view for precipitation and solubility control. The authors have selected the SSPs for the elements of interest for the latest Japanese performance assessment in bentonite and cement porewaters after grouping various water compositions.
Tsuji, Tomoyuki; Sugitsue, Noritake; Sato, Fuminori; Matsushima, Ryotatsu; Kataoka, Shoji; Okada, Shota; Sasaki, Toshiki; Inoue, Junya
Nihon Genshiryoku Gakkai-Shi ATOMO, 62(11), p.658 - 663, 2020/11
no abstracts in English
Aono, Ryuji; Mitsukai, Akina; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2020-006, 70 Pages, 2020/08
Radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried at the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from JPDR and JRR-4. In this report, we summarized the radioactivity concentrations of 19 radionuclides (H,
C,
Cl,
Co,
Ni,
Sr,
Nb,
Tc,
Ag,
I,
Cs,
Eu,
Eu,
U,
U,
Pu,
Pu,
Am,
Cm) which were obtained from radiochemical analysis of those samples.
Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*
JAEA-Review 2019-028, 71 Pages, 2020/03
JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization". The present study aims to develop the sintering solidification method for zeolites (spent zeolites) that adsorbs continuously generated radionuclides such as cesium. The sintering solidification method is able to stabilize adsorbed radionuclides such as cesium in zeolites by adding a glass as a binder to spent zeolite and sintered it. It is expected that the sintering solidification method is significantly reduce the volume of the solidified body compare with the glass solidification method and to form a stable solidified body equivalent to the calcination solidification method. In this project, we planned to select a glass suitable for the sintering solidification method and optimize the sintering temperature, etc. using non-radioactive nuclides (cold tests), and verify it by using radioactive nuclides (hot tests). In FY2018, we investigated the thermal properties of candidate glasses for binder and the effect of heating atmosphere on the sintering solidification method. Irradiated fuel for preparing simulated contaminated water containing radionuclides was selected and the condition of it was observed. In addition, we surveyed existing research results and latest research trends about solidification of zeolite, calcination solidification and so on.
Goto, Yuichi; Inada, Satoshi; Kuno, Takehiko; Mori, Eito*
Nihon Hozen Gakkai Dai-16-Kai Gakujutsu Koenkai Yoshishu, p.221 - 224, 2019/07
Test equipment, containers, and analytical wastes, generated by experiments using spent fuel pieces in hot cell of Operation Testing Laboratory and by analysis of highly active liquid wastes in hot analytical cell line of Tokai Reprocessing Plant, are treated as highly radioactive solid wastes. These wastes are stored in specific shielded containers called waste cask and then transport to the storage facility. The treatment of these highly radioactive solid wastes have been carried out for 40 years with upgrading waste taking out system and transportation device. As a results, automation of several procedures have been achieved utilizing conventional equipment, and work efficiency and safety have been improved.
JAERI's Internal Investigation Group on the Ruptured Glove; Department of Decommissioning and Waste Management
JAERI-Review 2002-017, 121 Pages, 2002/09
On November 21st, 2001, the glove rupture arose at an incinerator of Waste Treatment Building No.1 in JAERI Tokai Research Establishment. In order to examine the cause and recurrence prevention measure of the rupture, JAERI's Internal Investigation Group on the Ruptured Glove investigated the conditions of the incinerator including ash removing equipment and the glove, types and properties of waste which was incinerated on that day, and background factor of the trouble in cooperation with Department of Decommissioning and Waste Management.As the result, the causes of the rupture were that the solidification of liquid scintillator waste was insufficient, that the protective cover of the glove does not have pressure resistance and the degraded glove was used. For preventing the recurrence of the trouble, the direct confirmation of the solidification condition, the installation of protective cover for the glove, the improvement of the management of the glove, review of manuals and education and training were carried out.
Tsutsumi, Masahiro; Oishi, Tetsuya; Kinouchi, Nobuyuki; Sakamoto, Ryuichi; Yoshida, Makoto
Journal of Nuclear Science and Technology, 39(9), p.957 - 963, 2002/09
Times Cited Count:4 Percentile:28.66(Nuclear Science & Technology)An anti-Compton spectrometer with semi-2 Compton suppression is designed to identify the photons emitted from low-level radioactive wastes from radioisotope usage and nuclear research laboratory. Since the objective sample is massive and large, the system has a full opening towards the sample position. The characteristics and features of the system concerning Compton suppression and reduction of the background component due to natural radioactive source are estimated by the Monte Carlo simulations. The anti-Compton technique is shown to be quite advantageous for the reduction of the surrounding natural background radiation, as well as the suppression of the background for the higher energy photons.
Department of Fuel Cycle Safety Research
JAERI-Review 2001-019, 108 Pages, 2001/07
Department of Fuel Cycle Safety Research, JAERI, has been carrying out research on safe and rational disposal systems of radioactive wastes arising from medical activities and research institutes (RI and Research Institute Waste). The research area includes a study on molten solidified waste form, a geological survey on Japan, a proposal on integrated disposal systems, data acquisition for safety evaluation, and a safety analysis of disposal systems. This report introduces progress and future works for the treatment and disposal of RI and Research Institute Waste.
Nakamura, Hisashi; Hirabayashi, Takakuni
Nihon Kikai Gakkai Dai-6-Kai Doryoku, Enerugi Gijutsu Shimpojiumu '98 Koen Rombunshu, p.371 - 376, 1998/00
no abstracts in English
; ;
NGK Genshiryoku Giho, 0(3), p.4 - 13, 1991/03
no abstracts in English
Kato, Kiyoshi; ;
Nihon Genshiryoku Gakkai-Shi, 31(8), p.930 - 935, 1989/08
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)no abstracts in English
; ;
Nucl.Chem.Waste Manage., 3, p.131 - 137, 1982/00
no abstracts in English
; ;
Annals of Nuclear Energy, 8(8), p.363 - 369, 1981/00
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)no abstracts in English
; ; ;
Hoken Butsuri, 13(2), p.103 - 111, 1978/00
no abstracts in English
Takahatake, Yoko; Koma, Yoshikazu
no journal, ,
The radioactive nuclides dispersed without control to on- and off-site of Fukushima Daiichi Nuclear Power Station (F1NPS) at its accident in 2011. A large amount of radioactive solid waste has been generated during its decommissioning. Radioactivity inventory of the solid waste should be estimated for R&Ds on waste management. Cobalt-60 is often selected as a key-nuclide for determining activity in solid waste generated at nuclear power plant, and is also detected in various F1NPS waste. In this study, radiochemical analysis data opened to public was investigated for correlation between Co-60 and nuclides of activation and fission products as well as actinides (H-3, C-14, Ni-63, Sr-90, Tc-99, I-129, Cs-137, Eu-154, Am-241, Pu-239+240). Cobalt-60 well correlated with Ni-63, Eu-154, Am-241 and Pu-239+240 in spite of differences in physical/chemical properties and process of contamination. This finding suggests a possibility to apply Co-60 as a key-nuclide of scaling factor method.