Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 50

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Biofilm-mediated interactions between plastics and radiocesium in coastal environments

Battulga, B.; Nakanishi, Takahiro; Atarashi-Andoh, Mariko; Otosaka, Shigeyoshi*; Koarashi, Jun

Environmental Science and Pollution Research, 31, p.60080 - 60092, 2024/10

A ubiquitous distribution of plastic debris has been reported in aquatic and terrestrial environments; however, the interactions between plastics and radionuclides and the radioactivity of environmental plastics remain largely unknown. Here, we characterize biofilms developing on the surface of plastic debris to explore the role of plastic-associated biofilms as an interaction medium between plastics and radiocesium ($$^{137}$$Cs) in the environment. Biofilm samples were extracted from plastics (1-50 mm in size) collected from two contrasting coastal areas in Japan. The radioactivity of plastics was estimated based on the $$^{137}$$Cs activity concentration of the biofilms and compared seasonally with surrounding environmental samples (i.e., sediment and sand). $$^{137}$$Cs traces were detected in biofilms with activity concentrations of 21-1300 Bq kg$$^{-1}$$ biofilm (dry weight), corresponding to 0.04-4.5 Bq kg$$^{-1}$$ plastic (dry weight). Our results reveal the interaction between $$^{137}$$Cs and plastics and provide evidence that organic and mineral components in biofilms are essential in $$^{137}$$Cs retention in environmental plastics.

JAEA Reports

Radiation monitoring via manned helicopter around the nuclear power station in the fiscal year 2022 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Nagakubo, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Arai, Yoshinori*; et al.

JAEA-Technology 2023-027, 146 Pages, 2024/03

JAEA-Technology-2023-027.pdf:18.12MB

By the accident at Tokyo Electric Power Company's (TEPCO's) Fukushima Daiichi Nuclear Power Station (FDNPS), caused by tsunami triggered by the 2011 off the Pacific coast of Tohoku Earthquake, a large amount of radioactive material was released into the surrounding environment. After the accident, Airborne Radiation Monitoring (ARM) via manned helicopter has been applied as a method to quickly and extensively measure the distribution of radiation. Japan Atomic Energy Agency (JAEA) has continuously conducted ARM via manned helicopter around FDNPS. In this report, we summarize the results of the ARM around FDNPS in the fiscal year 2022, evaluate the changes of ambient dose rates and other parameters based on the comparison to the past ARM results, and discuss the causes of such changes. In order to contribute to improve the accuracy of ambient dose rate conversion, we analyzed the ARM data taking into account undulating topography, and evaluated the effect of this method. Furthermore, the effect of radon progenies in the air on the ARM was evaluated by applying the discrimination method to the measurement results.

JAEA Reports

Investigations on distribution of radioactive substances owing to the Fukushima Daiichi Nuclear Power Station Accident in the fiscal year 2022 (Contract research)

Group for Fukushima Mapping Project

JAEA-Technology 2023-024, 176 Pages, 2024/03

JAEA-Technology-2023-024.pdf:22.16MB

This report presents results of the investigations on the distribution-mapping project of radioactive substances owing to TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS) conducted in FY2022. Car-borne surveys, a measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data to create their distribution maps, and temporal changes of the air dose rates were analyzed. Surveys on depth profile of radiocesium and in-situ measurements as for radiocesium deposition were performed. Based on these measurement results, effective half-lives of the temporal changes in the air dose rates and the deposition were evaluated. Score maps to classify the importance of the measurement points were created, and the factors causing changes in the score when monitoring data from multiple years were used were discussed. The range of fluctuation of past tritium concentration data in seawater was determined, and the causes of the fluctuation were discussed. Monitoring data in coastal area performed in 2022 owing to the comprehensive radiation monitoring plan was summarized, and temporal changes in cesium-137 were analyzed. Using the Bayesian hierarchical modeling approach, we obtained maps that integrated air dose rate distribution data acquired through surveys such as car-borne and walk surveys with respect to the region within 80 km from the FDNPS and Fukushima Prefecture. The measurement results for FY2022 were published on the "Database for Radioactive Substance Monitoring Data", and measurement data were stored as CSV format. Radiation monitoring and analysis of environmental samples owing to the comprehensive radiation monitoring plan were carried out.

JAEA Reports

Contribution to risk reduction in decommissioning works by the elucidation of basic property of radioactive microparticles (Contract Research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Ibaraki University*

JAEA-Review 2023-021, 112 Pages, 2024/02

JAEA-Review-2023-021.pdf:7.1MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Contribution to Risk Reduction in Decommissioning Works by the Elucidation of Basic Property of Radioactive Microparticles" conducted from FY2018 to FY2021 (this contract was extended to FY2021). The present study aims to understand the basic properties (size, chemical composition, isotopic composition - including concentration of $$alpha$$-emitters, electrostatic properties, and optical properties, etc.) of fine particles composed of silicate with insoluble properties which contain regions of highly concentrated radioactive cesium (Cs) released to the environment by the accident at the Fukushima Daiichi Nuclear Power Station of TEPCO in 2011 March.

Journal Articles

Soil dust and bioaerosols as potential sources for resuspended $$^{137}$$Cs occurring near the Fukushima Dai-ichi Nuclear Power Plant

Ota, Masakazu; Takahara, Shogo; Yoshimura, Kazuya; Nagakubo, Azusa; Hirouchi, Jun; Hayashi, Naho; Abe, Tomohisa; Funaki, Hironori; Nagai, Haruyasu

Journal of Environmental Radioactivity, 264, p.107198_1 - 107198_15, 2023/08

 Times Cited Count:0 Percentile:0.00(Environmental Sciences)

One of the current major radiation exposure pathways from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident-fallout is inhalation of the re-suspended $$^{137}$$Cs occurring in air. While wind-induced soil particle resuspension has been recognized as a primary mechanism of $$^{137}$$Cs resuspension, studies following the FDNPP accident suggested that fungal spores can be a significant source of the atmospheric $$^{137}$$Cs particularly in the rural areas such as difficult-to-return zone (DRZ). To elucidate the relative importance of the two resuspension phenomena, we propose a model simulating resuspension of $$^{137}$$Cs as soil particles and fungal spores, and applied it to DRZ. Our model's calculation showed that soil particle resuspension was responsible for the surface-air $$^{137}$$Cs observed during winter-spring, but could not account for the higher $$^{137}$$Cs concentrations observed in summer-autumn. The higher concentrations in the summer-autumn were in general reproduced by implementing fungal spore $$^{137}$$Cs emission, that replenished low soil particle $$^{137}$$Cs resuspension in that period. According to our model's concept, $$^{137}$$Cs accumulation in fungal spores and high spore emission rate characterized by the rural environment were likely responsible for the abundance of spore $$^{137}$$Cs in the air. It was inferred that the influence of the fungal spores on the atmospheric $$^{137}$$Cs would last longer since un-decontaminated forests still exist in DRZ.

JAEA Reports

Research on atmospheric radioactivity concentration in the specified reconstruction and revitalization base (FY2018-FY2021)

Abe, Tomohisa; Funaki, Hironori; Yoshimura, Kazuya; Shiribiki, Natsu*; Sanada, Yukihisa

JAEA-Data/Code 2023-001, 38 Pages, 2023/05

JAEA-Data-Code-2023-001.pdf:3.04MB
JAEA-Data-Code-2023-001-appendix(CD-ROM).zip:32.02MB

In this study, commissioned by the Cabinet Office, we conducted a survey on radioactive materials in atmospheric dust in three municipalities (Futaba Town, Okuma Town, and Tomioka Town) in Fukushima Prefecture to contribute to the assessment of internal exposure in the Specified Reconstruction and Revitalization Base (SRRB). Air dust samplers were installed in the targeted municipalities to investigate the atmospheric $$^{137}$$Cs concentrations and to evaluate internal exposure doses based on measured value. This report summarizes the results of measurements between 2018 and 2021. A database of information on internal exposure dose assessment results based on atmospheric radioactivity concentrations and actual measurements, and meteorological observation data was compiled.

JAEA Reports

Radiation monitoring via manned helicopter around the Nuclear Power Station in the fiscal year 2021 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Nagakubo, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Urabe, Yoshimi*; et al.

JAEA-Technology 2022-027, 148 Pages, 2023/02

JAEA-Technology-2022-027.pdf:19.64MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been conducted around FDNPS. The results of the airborne radiation monitoring and the evaluation for temporal change of dose rate in the fiscal 2021 were summarized in this report. Analysis considering topographical effects was applied to the result of the airborne monitoring to improve the accuracy of the conventional method. In addition, technique for discriminating gamma rays from the ground and those from the airborne Rn-progenies was also utilized to evaluate their effect on airborne radiation monitoring.

JAEA Reports

Investigations on distribution of radioactive substances owing to the Fukushima Daiichi Nuclear Power Station Accident in the fiscal year 2021 (Contract research)

Group for Fukushima Mapping Project

JAEA-Technology 2022-026, 152 Pages, 2023/01

JAEA-Technology-2022-026.pdf:20.14MB

This report presents results of the investigations on the distribution-mapping project of radioactive substances owing to TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS) conducted in FY2021. Car-borne surveys, a flat ground measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data to create air dose rate distribution maps, and temporal changes of the air dose rates were analyzed. Surveys on depth profile of radiocesium and in-situ measurements as for radiocesium deposition were performed. Based on these measurement results, effective half-lives of the temporal changes in the air dose rates and the deposition were evaluated. Score maps to classify the importance of the measurement points were created for Fukushima Prefecture and the 80 km zone from the FDNPS, and the factors causing changes in the score when monitoring data from multiple years were used were discussed. Monitoring data in coastal area performed owing to the comprehensive radiation monitoring plan until 2020 was summarized, and temporal changes in cesium-137 were analyzed. Using the Bayesian hierarchical modeling approach, we obtained maps that integrated the air dose rate distribution data obtained in this project with respect to the region within 80 km from the FDNPS and Fukushima Prefecture. The measurement results for FY2021 were published on the "Expansion Site of Distribution Map of Radiation Dose", and measurement data were stored as CSV format. Radiation monitoring and analysis of environmental samples owing to the comprehensive radiation monitoring plan were carried out.

Journal Articles

The Formation mechanism of radiocesium-bearing microparticles derived from the Fukushima Daiichi Nuclear Power Plant using electron microscopy

Hagiwara, Hiroki; Kondo, Keietsu; Hidaka, Akihide

Journal of Radioanalytical and Nuclear Chemistry, 331(12), p.5905 - 5914, 2022/12

 Times Cited Count:3 Percentile:52.93(Chemistry, Analytical)

Journal Articles

A New approach to extracting biofilm from environmental plastics using ultrasound-assisted syringe treatment for isotopic analyses

Battulga, B.; Atarashi-Andoh, Mariko; Nakanishi, Takahiro; Koarashi, Jun

Science of the Total Environment, 849, p.157758_1 - 157758_11, 2022/11

 Times Cited Count:4 Percentile:37.30(Environmental Sciences)

Characterizing plastic-associated biofilms is key to the better understanding of organic material and mineral cycling in the "Plastisphere"-the thin layer of microbial life on plastics. In this study, we propose a new method to extract biofilms from environmental plastics, in order to evaluate the properties of biofilm-derived organic matter through stable carbon ($$delta$$$$^{13}$$C) and nitrogen ($$delta$$$$^{15}$$N) isotope signatures and their interactions with radionuclides especially radiocesium ($$^{137}$$Cs). After ultrasound-assisted separation from the plastics, biofilm samples were successfully collected via a sequence of syringe treatments. Biofilm-derived organic matter samples (14.5-65.4 mg) from four river mouths in Japan showed $$^{137}$$Cs activity concentrations of $$<$$75 to 820 Bq kg$$^{-1}$$ biofilm (dw), providing evidence that environmental plastics, mediated by developed biofilms, serve as a carrier for $$^{137}$$Cs in the coastal environment. Significant differences in the ($$delta$$$$^{13}$$C and $$delta$$$$^{15}$$N signatures were also obtained for the biofilms, indicating the different sources, pathways, and development processes of biofilms on plastics.

Journal Articles

Contamination processes of tree components in Japanese forest ecosystems affected by the Fukushima Daiichi Nuclear Power Plant accident $$^{137}$$Cs fallout

Ota, Masakazu; Koarashi, Jun

Science of the Total Environment, 816, p.151587_1 - 151587_21, 2022/04

 Times Cited Count:7 Percentile:58.33(Environmental Sciences)

In forests affected by the Fukushima Daiichi Nuclear Power Plant accident, trees became contaminated with $$^{137}$$Cs. However, $$^{137}$$Cs transfer processes determining tree contamination (particularly for stem wood, which is a prominent commercial resource in Fukushima) remain insufficiently understood. This study proposes a model for simulating the dynamic behavior of $$^{137}$$Cs in a forest tree-litter-soil system and applied it to two contaminated forests (cedar plantation and natural oak stand) in Fukushima. The model-calculated results and inter-comparison of the results with measurements elucidated the relative impact of distinct $$^{137}$$Cs transfer processes determining tree contamination. The transfer of $$^{137}$$Cs to trees occurred mostly ($$>$$ 99%) through surface uptake of $$^{137}$$Cs directly trapped by leaves or needles and bark during the fallout. By contrast, root uptake of $$^{137}$$Cs from the soil was unsubstantial and several orders of magnitude lower than the surface uptake over a 50-year period following the accident. As a result, the internal contamination of the trees proceeded through an enduring recycling (translocation) of $$^{137}$$Cs absorbed on the tree surface at the time of the accident. A significant surface uptake of $$^{137}$$Cs at the bark was identified, contributing 100% (leafless oak tree) and 30% (foliated cedar tree; the remaining surface uptake occurred at the needles) of the total $$^{137}$$Cs uptake by trees. It was suggested that the trees growing at the study sites are currently (as of 2021) in a decontamination phase; the activity concentration of $$^{137}$$Cs in the stem wood decreases by 3% per year, mainly through radioactive decay of $$^{137}$$Cs and partly through a dilution effect from tree growth.

JAEA Reports

Result of measurement of the ambient dose equivalent rates by car-borne surveys using KURAMA-II from 2012 until 2019

Ando, Masaki; Saito, Kimiaki

JAEA-Technology 2021-032, 66 Pages, 2022/03

JAEA-Technology-2021-032.pdf:3.84MB

Since the occurrence of the accident at the TEPCO Fukushima Daiichi Nuclear Power Station, the Japan Atomic Energy Agency (JAEA) has been conducting a series of car-borne survey over a wide area in the eastern part of Japan using the monitoring system KURAMAII. In this report, outline of the car-borne surveys are summarized and the following characteristics of the temporal changes in each prefecture and region were investigated using the measured data obtained from 2012 to 2019; 1) Average and maximum values for each prefecture for the six years from 2014 to 2019, 2) Average values for each prefecture from 2012 to 2019, 3) Average values for each evacuation order area category, regional category, and northern Soso-area municipality in Fukushima Prefecture from 2012 to 2019, and 4) Average and maximum values for each municipality in each prefecture for four times (at almost two-year intervals) of the measurement results from 2012 to 2018.

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2020 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; et al.

JAEA-Technology 2021-029, 132 Pages, 2022/02

JAEA-Technology-2021-029.pdf:24.58MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been conducted around FDNPS. The results of the airborne radiation monitoring and the evaluation for temporal change of dose rate in the fiscal 2020 were summarized in this report. Analysis considering topographical effects was applied to the result of the airborne monitoring to improve the accuracy of conventional method. In addition, technique for discriminating gamma rays from the ground and those from the airborne Rn-progenies was also utilized to evaluate their effect on airborne radiation monitoring.

JAEA Reports

Investigations on distribution of radioactive substances owing to the Fukushima Daiichi Nuclear Power Station Accident in the fiscal year 2020 (Contract research)

Group for Fukushima Mapping Project

JAEA-Technology 2021-025, 159 Pages, 2022/01

JAEA-Technology-2021-025.pdf:46.66MB

This report presents results of the investigations on the distribution-mapping project of radioactive substances owing to TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS) conducted in FY2020. Car-borne surveys, a flat ground measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data. Air dose rate distribution maps were created and temporal changes of the air dose rates were analyzed. Regarding radiocesium deposition into the ground, surveys on depth profile of radiocesium and in-situ measurements were performed. Based on these measurement results, effective half-lives of the temporal changes in the air dose rates and the deposition were evaluated. In the examination of scoring for classifying the importance of measurement points, a score map was created for Fukushima Prefecture and the 80 km zone from the FDNPS, and the factors causing changes in the score when monitoring data from multiple years were used were discussed. Using the Bayesian hierarchical modeling approach, we obtained maps that integrated the air dose rate distribution data obtained from aircraft monitoring, car-borne surveys, and walk surveys with respect to the region within 80 km from the FDNPS and Fukushima Prefecture. The measurement results for FY2020 were published on the "Expansion Site of Distribution Map of Radiation Dose", and measurement data were stored as CSV format. Radiation monitoring and analysis of environmental samples owing to the comprehensive radiation monitoring plan were carried out.

Journal Articles

Characterization of radiocesium-bearing microparticles with different morphologies in soil around the Fukushima Daiichi Nuclear Power Plant

Hagiwara, Hiroki; Funaki, Hironori; Shiribiki, Natsu*; Kanno, Marina*; Sanada, Yukihisa

Journal of Radioanalytical and Nuclear Chemistry, 331(1), p.415 - 426, 2022/01

 Times Cited Count:7 Percentile:69.06(Chemistry, Analytical)

Journal Articles

Temporal change in atmospheric radiocesium during the first seven years after the Fukushima Dai-ich Nuclear Power Plant accident

Abe, Tomohisa; Yoshimura, Kazuya; Sanada, Yukihisa

Aerosol and Air Quality Research, 21(7), p.200636_1 -  200636_11, 2021/07

 Times Cited Count:4 Percentile:21.49(Environmental Sciences)

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2019 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; et al.

JAEA-Technology 2020-018, 121 Pages, 2021/02

JAEA-Technology-2020-018.pdf:15.15MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been conducted around FDNPS. The results in the fiscal 2019 were summarized in this report. Analysis taken topographical effects into consideration was applied to the result of airborne monitoring to improve the precision of conventional method. In addition, discrimination method of gamma rays from Rn-progenies was also utilized to evaluate their effect on aerial radiation monitoring.

JAEA Reports

Contribution to risk reduction in decommissioning works by the elucidation of basic property of radioactive microparticles (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Ibaraki University*

JAEA-Review 2020-033, 84 Pages, 2021/01

JAEA-Review-2020-033.pdf:4.9MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Contribution to Risk Reduction in Decommissioning Works by the Elucidation of Basic Property of Radioactive Microparticles" conducted in FY2019.

JAEA Reports

Investigations on distribution of radioactive substances owing to the Fukushima Dai-ichi Nuclear Power Station Accident in the fiscal year 2019 (Contract research)

Group for Fukushima Mapping Project

JAEA-Technology 2020-014, 158 Pages, 2020/12

JAEA-Technology-2020-014.pdf:23.82MB

This report presents results of the investigations on the distribution-mapping project of radioactive substances owing to TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS) conducted in FY2019. Car-borne surveys, a flat ground measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data. Air dose rate distribution maps were created and temporal changes of the air dose rates were analyzed. Regarding radiocesium deposition into the ground, surveys on depth profile of radiocesium and in-situ measurements were performed. Based on these measurement results, effective half-lives of the temporal changes in the air dose rates and the deposition were evaluated. In the examination of scoring to classify the importance of measurement points, we created a score map of Fukushima Prefecture and that within 80 km from the FDNPS based on the "score" method developed in 2018. The way of monitoring radioactive materials in land area was examined and the representativeness of monitoring points was proposed. Using the Bayesian hierarchical modeling approach, we obtained maps that integrated the air dose rate distribution data obtained from aircraft monitoring, car-borne surveys, and walk surveys with respect to the region within 80 km from the FDNPS and Fukushima Prefecture. The measurement results for FY2019 were published on the "Expansion Site of Distribution Map of Radiation Dose", and measurement data were stored as CSV format. Radiation monitoring and analysis of environmental samples owing to the comprehensive radiation monitoring plan were carried out.

Journal Articles

Impact of soil erosion potential uncertainties on numerical simulations of the environmental fate of radiocesium in the Abukuma River basin

Ikenoue, Tsubasa; Shimadera, Hikari*; Kondo, Akira*

Journal of Environmental Radioactivity, 225, p.106452_1 - 106452_12, 2020/12

 Times Cited Count:5 Percentile:21.10(Environmental Sciences)

This study focused on the uncertainty of the factors of the Universal Soil Loss Equation (USLE) and evaluated its impacts on the environmental fate of $$^{137}$$Cs simulated by a radiocesium transport model in the Abukuma River basin. The USLE has five physically meaningful factors: the rainfall and runoff factor (R), soil erodibility factor (K), topographic factor (LS), cover and management factor (C), and support practice factor (P). The simulation results showed total suspended sediment and $$^{137}$$Cs outflows were the most sensitive to C and P among the all factors. Therefore, land cover and soil erosion prevention act have the great impact on outflow of suspended sediment and $$^{137}$$Cs. Focusing on land use, the outflow rates of $$^{137}$$Cs from the forest areas, croplands, and undisturbed paddy fields were large. This study indicates that land use, especially forest areas, croplands, and undisturbed paddy fields, has a significant impact on the environmental fate of $$^{137}$$Cs.

50 (Records 1-20 displayed on this page)