Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamashita, Takuya; Sato, Takumi; Madokoro, Hiroshi; Nagae, Yuji
Annals of Nuclear Energy, 173, p.109129_1 - 109129_15, 2022/08
Brumm, S.*; Gabrielli, F.*; Sanchez-Espinoza, V.*; Groudev, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; Bocanegra, R.*; Herranz, L. E.*; Berda, M.*; et al.
Proceedings of 10th European Review Meeting on Severe Accident Research (ERMSAR 2022) (Internet), 13 Pages, 2022/05
Yamashita, Takuya; Madokoro, Hiroshi; Sato, Ikken
Journal of Nuclear Engineering and Radiation Science, 8(2), p.021701_1 - 021701_13, 2022/04
Nanjo, Kotaro; Ishikawa, Jun; Sugiyama, Tomoyuki; Pellegrini, M.*; Okamoto, Koji*
Journal of Nuclear Science and Technology, 10 Pages, 2022/04
Kimura, Fumihito*; Yamamura, Sota*; Fujiwara, Kota*; Yoshida, Hiroyuki; Saito, Shimpei*; Kaneko, Akiko*; Abe, Yutaka*
Nuclear Engineering and Design, 389, p.111660_1 - 111660_11, 2022/04
Quaini, A.*; Goss, S.*; Payot, F.*; Suteau, C.*; Delacroix, J.*; Saas, L.*; Gubernatis, P.*; Martin-Lopez, E.*; Yamano, Hidemasa; Takai, Toshihide; et al.
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 10 Pages, 2022/04
CEA and JAEA defined new sub-tasks under the current implementing arrangement: Kinetics of interaction in core material mixtures- Physical properties of core material mixtures, High temperature thermodynamic data for the UO-Fe-B
C system, Experimental studies on B
C-SS kinetics and B
C-SS eutectic material relocation (freezing), B
C/SS eutectic and kinetics models for SIMMER code systems, Methodology for the modelling of mixtures liquefaction kinetics. The paper describes major R&D results obtained in the France-Japan collaboration under the previous implementing arrangement as well as experimental and analytical roadmaps under the current arrangement.
Johnson, M.*; Delacroix, J.*; Journeau, C.*; Brayer, C.*; Clavier, R.*; Montazel, A.*; Pluyette, E.*; Matsuba, Kenichi; Emura, Yuki; Kamiyama, Kenji
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 8 Pages, 2022/04
Fuel-coolant interactions in the event of molten fuel discharge to the lower plenum of a sodium cooled fast reactor is under investigation as part of a French-Japanese experimental collaboration on severe accidents. The MELT facility enables the X-ray visualisation of the quenching of molten core material jets in sodium at kilogram-scale. The SERUA facility, currently under preparation, is presented for the investigation of boiling heat transfer at elevated melt-coolant interface temperatures. In this article, the status of the collaboration using these facilities is presented.
Onoda, Yuichi; John Arul, A.*; Klimonov, I.*; Danting, S.*
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 13 Pages, 2022/04
Osaka, Masahiko; Goullo, M.*; Nakajima, Kunihisa
Journal of Nuclear Science and Technology, 59(3), p.292 - 305, 2022/03
Research on the fission product chemistry made after the severe accident of the Fukushima Daiichi Nuclear Power Station were reviewed with focus on the Cesium chemistry in terms of two regimes, namely the accidental source term and the long-term source term via aqueous phase towards the decommissioning. For the accidental source term, Cs chemical interaction with Mo, B and Si were reviewed. Regarding the unique issue of long-term source term via aqueous phase, Cs penetration into concrete and fuel debris leaching were mentioned as the main sources of FPs. Efforts on the preparation of thermodynamic data for the Cs complex oxides were described. All these Cs chemical behaviors should be modelled and validated/verified through the analysis and evaluation of the actual samples including fuel debris that would be taken from the Fukushima Daiichi Nuclear Power Station in near future.
Nagase, Fumihisa; Otomo, Takashi; Uetsuka, Hiroshi*
Nuclear Technology, 208(3), p.484 - 493, 2022/03
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)An Ag-In-Cd control rod alloy was heated in argon or oxygen at 1073-1673 K for 60-3600 s and the release behavior of the elements was examined. Complete liquefaction of the alloy occurred between 1123 and 1173 K, and elemental release was quite limited below the liquefaction temperature. In argon, almost all of the Cd content was released within 3600 s at 1173 K and within 60 s at
1573 K, while the released fractions of Ag and In were
3% and
8%, respectively. In oxygen, the release of Cd, which was quite small at temperatures up to 1573 K, drastically increased to
30-50% at 1673 K for short periods. Releases of Ag and In were also small in oxygen under the examined conditions. Comparison with the experimental data suggests that conventional empirical release models may underestimate the Cd release at lower temperatures just after control rod failure in severe accidents.
Doi, Daisuke; Seino, Hiroshi; Miyahara, Shinya*; Uno, Masayoshi*
Journal of Nuclear Science and Technology, 59(2), p.198 - 206, 2022/02
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Yoshida, Naoki; Ono, Takuya; Yoshida, Ryoichiro; Amano, Yuki; Abe, Hitoshi
JAEA-Research 2021-011, 12 Pages, 2022/01
In boiling and drying accidents involving high-level liquid waste in fuel reprocessing plants, emphasis is placed on the behavior of ruthenium (Ru). Ru would form volatile species, such as ruthenium tetroxide (RuO), and could be released to the environment with coexisting gases, including nitric acid, water, or nitrogen oxides. In this study, to contribute toward safety evaluations of these types of accidents, the migration behavior of gaseous Ru into the liquid phase has been experimentally measured by simulating the condensate during an accident. The gas absorption of RuO
was enhanced by increasing the nitrous acid (HNO
) concentration in the liquid phase, indicating the occurrence of chemical absorption. In control experiments without HNO
, the lower the temperature, the greater was the Ru recovery ratio in the liquid phase. Conversely, in experiments with HNO
, the higher the temperature, the higher the recovery ratio, suggesting that the reaction involved in chemical absorption was activated at higher temperatures.
Iwasawa, Yuzuru; Sugiyama, Tomoyuki; Abe, Yutaka*
Nuclear Engineering and Design, 386, p.111575_1 - 111575_17, 2022/01
Rizaal, M.; Miwa, Shuhei; Suzuki, Eriko; Imoto, Jumpei; Osaka, Masahiko; Goullo, M.*
ACS Omega (Internet), 6(48), p.32695 - 32708, 2021/12
Sahboun, N. F.; Matsumoto, Toshinori; Iwasawa, Yuzuru; Sugiyama, Tomoyuki
Proceedings of Asian Symposium on Risk Assessment and Management 2021 (ASRAM 2021) (Internet), 15 Pages, 2021/10
Takai, Toshihide; Furukawa, Tomohiro; Yamano, Hidemasa
Mechanical Engineering Journal (Internet), 8(4), p.20-00540_1 - 20-00540_11, 2021/08
In a core disruptive accident scenario, boron carbide, which is used as a control rod material, may melt below the melting temperature of stainless steel owing to the eutectic reaction with them. The eutectic mixture produced is assumed to extensively relocate in the degraded core, and this behavior plays an important role in significantly reducing the neutronic reactivity. However, these behaviors have never been simulated in previous severe accident analysis. To contribute to the improvement of the core disruptive accident analysis code, the thermophysical properties of the eutectic mixture in the solid state were measured, and regression equations that show the temperature (and boron carbide concentration) dependence are created.
Li, C.; Uchibori, Akihiro; Takata, Takashi; Pellegrini, M.*; Erkan, N.*; Okamoto, Koji*
Dai-25-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2021/07
The capability of stable cooling and avoiding re-criticality on the debris bed are the main issues for achieving IVR (In-Vessel Retention). In the actual situation, the debris bed is composed of mixed-density debris particles. Hence, when these mixed-density debris particles were launched to re-distribute, the debris bed would possibly form a density-stratified distribution. For the proper evaluation of this scenario, the multi-physics model of CFD-DEM-Monte-Carlo based neutronics is established to investigate the coolability and re-criticality on the heterogeneous density-stratified debris bed with considering the particle relocation. The CFD-DEM model has been verified by utilizing water injection experiments on the mixed-density particle bed in the first portion of this research. In the second portion, the coupled system of the CFD-DEM-Monte-Carlo based neutronics model is applied to reactor cases. Afterward, the debris particles' movement, debris particles' and coolant's temperature, and the k-eff eigenvalue are successfully tracked. Ultimately, the relocation and stratification effects on debris bed's coolability and re-criticality had been quantitatively confirmed.
Maruyama, Yu; Yoshida, Kazuo
Nihon Genshiryoku Gakkai-Shi ATOMO, 63(7), p.517 - 522, 2021/07
no abstracts in English
Sato, Ikken; Arai, Yuta*; Yoshikawa, Shinji
Journal of Nuclear Science and Technology, 58(4), p.434 - 460, 2021/04
Times Cited Count:2 Percentile:94.32(Nuclear Science & Technology)Khatib-Rahbar, M.*; Barrachin, M.*; Denning, R.*; Gabor, J.*; Gauntt, R.*; Herranz, L. E.*; Hobbins, R.*; Jacquemain, D.*; Maruyama, Yu; Metcalf, J.*; et al.
NUREG/CR-7282, ERI/NRC 21-204 (Internet), 160 Pages, 2021/04