Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Sakai, Takaaki*
Nuclear Engineering and Design, 432, p.113785_1 - 113785_16, 2025/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Establishing an evaluation method for the gas entrainment (GE) of argon cover gas due to surface vortices is required in terms of safety design of sodium-cooled fast reactors. To modify the evaluation model in an in-house evaluation tool for GE, StreamViewer, a modified evaluation model on the pressure distribution along the vortex center line (PVL model) was proposed to identify the vortex center lines by connecting continuous vortex center points from the suction port to the surface and evaluate gas core length based on the balance between the hydrostatic pressure and the pressure decrease distribution along the vortex center line. PVL model was applied the three-dimensional numerical analysis results for the experiments where a plate induced unsteady traveling vortices in the open channel flow. Consequently, the GE evaluation using StreamViewer with PVL model could reproduce the relation between the inlet flow velocity and the gas core length in the unsteady vortex flow experiments.
Sonehara, Masateru; Okano, Yasushi; Uchibori, Akihiro; Oki, Hiroshi*
Journal of Nuclear Science and Technology, 12 Pages, 2024/12
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)For sodium-cooled fast reactors, understanding sodium combustion behaviour is crucial for managing sodium leakage accidents. In this study, we perform benchmark analyses of the Sandia National Laboratories (SNL) T3 experiment using the multi-dimensional thermal hydraulic code AQUA-SF. Conducted in an enclosed space with a large vessel volume of 100 m and a sodium mass flow rate of 1 kg/s, the experiment highlighted the multi-dimensional effects of local temperature increase shortly after sodium injection. This study aims to extend the capabilities of AQUA-SF by focusing on the simulation of these multi-dimensional temperature variations, in particular the formation of high temperature regions at the bottom of the vessel. The proposed models include the temporary stopping of sodium droplet ignition and spray combustion of sodium splash on the floor. Furthermore, it has been shown that additional heat source near the floor is essential to enhance the reproduction of the high temperature region at the bottom. Therefore, case studies including sensitivity analyses of spray cone angle and prolonged combustion of droplets on the floor are conducted. This comprehensive approach provides valuable insights into the dynamics of sodium combustion and safety measures in sodium-cooled fast reactors.
Doi, Daisuke
International Journal of Hydrogen Energy, 91, p.1245 - 1252, 2024/11
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)Emura, Yuki; Matsuba, Kenichi; Kikuchi, Shin; Yamano, Hidemasa
Proceedings of 13th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 8 Pages, 2024/11
Sogabe, Joji; Ishida, Shinya; Tagami, Hirotaka; Okano, Yasushi; Kamiyama, Kenji; Onoda, Yuichi; Matsuba, Kenichi; Yamano, Hidemasa; Kubo, Shigenobu; Kubota, Ryuzaburo*; et al.
Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10
In the frame of France-Japan collaboration, the calculational methodologies were defined and assessed, and the phenomenology and the severe accident consequences were investigated in a pool-type sodium-cooled fast reactor.
Onoda, Yuichi; Ishida, Shinya; Fukano, Yoshitaka; Kamiyama, Kenji; Yamano, Hidemasa; Kubo, Shigenobu; Shibata, Akihiro*; Bertrand, F.*; Seiler, N.*
Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10
Kurisaka, Kenichi; Nishino, Hiroyuki; Yamano, Hidemasa
Proceedings of Probabilistic Safety Assessment and Management & Asian Symposium on Risk Assessment and Management (PSAM17 & ASRAM2024) (Internet), 10 Pages, 2024/10
The objective of this study is to implement an effectiveness evaluation of the measures for improving resilience of nuclear structures against excessive earthquake. In this study, those measures for improving resilience have an effect to enlarge their seismic safety margin. To evaluate effectiveness of those measures, seismic core damage frequency (CDF) is selected as an index. Reduction of CDF as an effectiveness index is quantified by applying seismic PRA technology. Target system is a loop-type next-generation sodium-cooled fast reactor, which adopts the building isolated from horizontal seismic ground motion. Even if the reactor vessel (RV) is buckled due to seismic shaking, it is expected that the RV maintains stable state without unstable failure such as rupture, collapse. Realistic consideration of the post-buckling behavior is regarded as a measure for improving resilience in this study. We set two cases for improving the resilience in the accident sequences analysis. The first case assumes low-cycle fatigue failure after buckling as the realistic failure mode of the RV, and we applied the fragility evaluated in our study. After the RV fatigue failure, the behavior of failure propagation is very uncertain. As the second case, the median seismic capacity to loss of reactor level is assumed to be slightly larger than that of fatigue failure of the RV. Analyses for both cases were performed, and the results were compared to the base case indicating significant reduction of CDF. Within the assumption, the measures for improving the resilience were significantly effective for decreasing CDF in excessive earthquake up to several times of a design basis ground motion. The seismic PRA technology could serve to the effectiveness evaluation of the measures for improving resilience of nuclear structures against excessive earthquake.
Yamano, Hidemasa; Futagami, Satoshi; Higurashi, Koichi*
Proceedings of Advanced Reactor Safety (ARS 2024), p.121 - 130, 2024/08
This paper describes the application of safety design criteria (SDC) and safety design guideline (SDG) developed in the Generation-IV international forum on decay heat removal system (DHRS) enhancing reliability to sodium-cooled fast reactors (SFRs) recently designed in Japan.
Yamano, Hidemasa; Futagami, Satoshi; Shibata, Akihiro*
Proceedings of Advanced Reactor Safety (ARS 2024), p.151 - 160, 2024/08
This study examined the application of safety design criteria (SDC) and safety design guideline (SDG) developed in the Generation-IV international forum on the active reactor shutdown system (RSS) to sodium-cooled fast reactors (SFRs) recently designed in Japan.
Li, C.-Y.; Watanabe, Akira*; Uchibori, Akihiro; Okano, Yasushi
Journal of Nuclear Science and Technology, 61(7), p.935 - 957, 2024/07
Times Cited Count:2 Percentile:54.24(Nuclear Science & Technology)Emura, Yuki; Takai, Toshihide; Kikuchi, Shin; Kamiyama, Kenji; Yamano, Hidemasa; Yokoyama, Hiroki*; Sakamoto, Kan*
Journal of Nuclear Science and Technology, 61(7), p.911 - 920, 2024/07
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Ishida, Shinya; Uchibori, Akihiro; Okano, Yasushi
Dai-28-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2024/06
no abstracts in English
Miyazawa, Takeshi; Tanno, Takashi; Imagawa, Yuya; Hashidate, Ryuta; Yano, Yasuhide; Kaito, Takeji; Otsuka, Satoshi; Mitsuhara, Masatoshi*; Toyama, Takeshi*; Onuma, Masato*; et al.
Journal of Nuclear Materials, 593, p.155008_1 - 155008_16, 2024/05
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Ishida, Shinya; Fukano, Yoshitaka; Tobita, Yoshiharu; Okano, Yasushi
Journal of Nuclear Science and Technology, 61(5), p.582 - 594, 2024/05
Times Cited Count:1 Percentile:31.89(Nuclear Science & Technology)Yoshikawa, Ryuji; Imai, Yasutomo*; Kikuchi, Norihiro; Tanaka, Masaaki; Ohshima, Hiroyuki
Nuclear Technology, 210(5), p.814 - 835, 2024/05
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)In the study of safety enhancement on advanced sodium-cooled fast reactor, it is essential to clarify the thermal-hydraulics under various operation conditions in a fuel assembly (FA) with the wire-wrapped fuel pins to assess the structural integrity of the fuel pin. A finite element thermal-hydraulics analysis code named SPIRAL has been developed to analyze the detailed thermal-hydraulics phenomena in a FA. In this study, the numerical simulations of the 37-pin bundle sodium experiments at different Re number conditions, including a transitional condition between laminar and turbulent flows and turbulent flow conditions, were performed to validate the hybrid turbulence model equipped in SPIRAL. The temperature distributions predicted by SPIRAL was consistent with those measured in the experiments. Through the validation study, the applicability of the hybrid turbulence model in SPIRAL to thermal-hydraulic evaluation of sodium-cooled FA in the wide range of Re number was confirmed.
Kurisaka, Kenichi
Mechanical Engineering Journal (Internet), 11(2), p.23-00377_1 - 23-00377_14, 2024/04
This study aims to understand the time-dependent change in the occurrence rate of leak from steam generator (SG) tubes in sodium-cooled fast reactors (SFRs). The target SFRs in the present paper are Phenix in France and BN-600 in Russia. By reviewing publicly available literature that show data from the SFRs, we have investigated the numbers of tube-to-tubeplate welds and tube-to-tube welds, heat transfer areas of tube base metal, operating hours of SGs, dates when SG tube leak occurred, locations of leak, and corrective actions taken after tube leak events, such as replacement of the module, in which a leak occurred. Based on these, we have estimated the time to leak and quantitatively analyzed the time-dependent change of the occurrence rates of SG tube leak for each of the above-mentioned parts by hazard plotting method. The results show that the rates of both Phenix and BN-600 decreased over time. For Phenix, this is probably thanks to improved welding and SG operating conditions. For BN-600, it seems that in many cases, the probable cause of the leak was initial defects that developed to failure during the early stage of reactor operation, and that no special countermeasure was taken in the later stages. Therefore, it would be natural to assume that the rate simply decreased over time. The rate of leak at tube-to-tube welds in Phenix shows significant increase in a short term after a certain period of time. This can be caused by thermal stress repeatedly exerted on the materials.
Yamamoto, Tomohiko; Kato, Atsushi; Hayakawa, Masato; Shimoyama, Kazuhito; Ara, Kuniaki; Hatakeyama, Nozomu*; Yamauchi, Kanau*; Eda, Yuhei*; Yui, Masahiro*
Nuclear Engineering and Technology, 56(3), p.893 - 899, 2024/03
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Kawaguchi, Munemichi; Hirakawa, Yasushi; Sugita, Yusuke; Yamaguchi, Yutaka
Nuclear Technology, 210(1), p.55 - 71, 2024/01
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)This study has developed an estimation method for residual sodium film and sodium lumps on dummy fuel pins in Monju and demonstrated sodium draining behavior through gaps among the pins, experimentally. The amounts of the residual sodium on the surface of the pins were measured using the three-type test specimens: (a) single pin, (b) 7-pin assembly, and (c) 169-pin assembly. The experiments revealed that the withdrawal speed of the pins and improvement of the sodium wetting increased drastically the amounts of the residual sodium. Furthermore, the experiments using the 169-pin assembly measured the practical amounts of the residual sodium in the dummy fuel assembly of short length and demonstrated sodium draining behavior through the dummy fuel assembly. The estimation method includes four models: a viscosity flow model, Landau-Levich-Derjaguin (LLD) model, an empirical equation related to the Bretherton model, and a capillary force model in a tube. The calculation predicted comparable amounts of the residual sodium with the experiments. An uncertain of the sodium wetting effects were close to 1.8 times the estimation values of the LLD model. With this estimation method, the amounts of the residual sodium on the unloaded Monju dummy fuel assembly can be evaluated.
Ohno, Shuji; Maeda, Seiichiro
Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 3 Pages, 2023/09
Kosaka, Wataru; Uchibori, Akihiro; Okano, Yasushi; Yanagisawa, Hideki*
Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.1150 - 1163, 2023/08
The leakage of pressurized water from a steam generator (SG) and the progress after that are a key issue in the safety assessment or design of a SG in sodium-cooled fast reactor. The analysis code LEAP-III can evaluate a rate of water leakage during the long-term event progress, i.e., from the self-wastage initiated by an occurrence of a microscopic crack in a tube wall to the water leak detection and water/water-vapor blowdown. Since LEAP-III consists of semi-empirical formulae and one-dimensional equations of conservation, it has an advantage in short computation time. Thus, LEAP-III can facilitate the exploration of various new SG designs in the development of innovative reactors. However, there are several problems, such as an excessive conservative result in some case and the need for numerous experiments or preliminary analyses to determine tuning parameters of models in LEAP-III. Hence, we have developed a Lagrangian particle method code, which is characterized by a simpler computational principle and faster calculation. In this study, we have improved the existing particle pair search method for interparticle interaction in this code and developed an alternative model without the pair search. Through the trial analysis simulating in a tube bundle system, it was confirmed that new models reduced the computation time. In addition, it was shown that representative temperatures of the heat-transfer tubes evaluated by this particle method code, which is used to predict the tube failure in LEAP-III, were good agreement with that by SERAPHIM, which is a detailed mechanistic analysis method code.