Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 261

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Dependence of charge-exchange efficiency on cooling water temperature of a beam transport line

Yamamoto, Kazami; Hatakeyama, Shuichiro; Saha, P. K.; Moriya, Katsuhiro; Okabe, Kota; Yoshimoto, Masahiro; Nakanoya, Takamitsu; Fujirai, Kosuke; Yamazaki, Yoshio; Suganuma, Kazuaki

EPJ Techniques and Instrumentation (Internet), 8(1), p.9_1 - 9_9, 2021/07

The 3 GeV Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex supplies a high-intensity proton beam for neutron experiments. Various parameters are monitored to achieve a stable operation, and it was found that the oscillations of the charge-exchange efficiency and cooling water temperature were synchronized. We evaluated the orbit fluctuations at the injection point using a beam current of the injection dump, which is proportional to the number of particles that miss the foil and fail in the charge exchange, and profile of the injection beam. The total width of the fluctuations was approximately 0.072 mm. This value is negligible from the user operation viewpoint as our existing beam position monitors cannot detect such a small signal deviation. This displacement corresponds to a 1.63$$times$$10$$^{-5}$$ variation in the dipole magnetic field. Conversely, the magnetic field variation in the L3BT dipole magnet, which was estimated by the temperature change directly, is 4.08$$times$$10$$^{-5}$$. This result suggested that the change in the cooling water temperature is one of the major causes of the efficiency fluctuation.

Journal Articles

Re-evaluation of radiation-energy transfer to an extraction solvent in a minor-actinide-separation process based on consideration of radiation permeability

Toigawa, Tomohiro; Tsubata, Yasuhiro; Kai, Takeshi; Furuta, Takuya; Kumagai, Yuta; Matsumura, Tatsuro

Solvent Extraction and Ion Exchange, 39(1), p.74 - 89, 2021/00

 Times Cited Count:0 Percentile:0(Chemistry, Multidisciplinary)

Absorbed-dose estimation is essential for evaluation of the radiation feasibility of minor-actinide-separation processes. We propose a dose-evaluation method based on radiation permeability, with comparisons of heterogeneous structures seen in the solvent-extraction process, such as emulsions forming in the mixture of the organic and aqueous phases. A demonstration of radiation-energy-transfer simulation is performed with a focus on the minor-actinide-recovery process from high-level liquid waste with the aid of the Monte Carlo radiation-transport code PHITS. The simulation results indicate that the dose absorbed by the extraction solvent from alpha ray depends upon the emulsion structure, and that from beta and gamma ray depends upon the mixer-settler-apparatus size. Non-negligible contributions of well-permeable gamma rays were indicated in terms of the plant operation of the minor-actinide-separation process.

JAEA Reports

Development of tailor-made adsorbents for uranium recovery from seawater on the basis of uranyl coordination chemistry (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2020-026, 41 Pages, 2020/12

JAEA-Review-2020-026.pdf:3.25MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of Tailor-Made Adsorbents for Uranium Recovery from Seawater on the Basis of Uranyl Coordination Chemistry". On the basis of deep understanding on uranyl coordination chemistry, we design molecular structures of pentadentate ligands as functional moieties for uranium adsorption from seawater and study coordination chemistry of uranyl ion with those ligands in order to resolve current problems in uranium recovery technology from seawater and to develop novel selective and efficient adsorbents for this purpose.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2019

Ishimaru, Tsuneari; Ogata, Nobuhisa; Kokubu, Yoko; Shimada, Koji; Hanamuro, Takahiro; Shimada, Akiomi; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Sueoka, Shigeru; et al.

JAEA-Research 2020-011, 67 Pages, 2020/10

JAEA-Research-2020-011.pdf:3.87MB

This annual report documents the progress of research and development (R&D) in the 5th fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.

Journal Articles

Development of a multiphase particle method for melt-jet breakup behavior of molten core in severe accident

Wang, Z.; Iwasawa, Yuzuru; Sugiyama, Tomoyuki

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 12 Pages, 2020/08

JAEA Reports

Long-term monitoring of the stability of the gallery in Horonobe Underground Research Laboratory

Aoyagi, Kazuhei; Sakurai, Akitaka; Miyara, Nobukatsu; Sugita, Yutaka

JAEA-Research 2020-004, 68 Pages, 2020/06

JAEA-Research-2020-004.pdf:6.4MB
JAEA-Research-2020-004-appendix1(DVD-ROM).zip:636.84MB
JAEA-Research-2020-004-appendix2(DVD-ROM).zip:457.72MB
JAEA-Research-2020-004-appendix3(DVD-ROM).zip:595.19MB

In construction and operational phase of a high-level radioactive waste disposal project, it is necessary to monitor on mechanical stability of underground facility for long term. In this research, we measured the displacement of the rock around the gallery and the stress acting on support materials. Furthermore, we investigated the durability of measurement sensor installed in the rock mass and the support material such as concreate lining and steel support. As a result, optical fiber sensor is appropriate for measurement of the displacement of rock mass around the gallery, while it is enough to apply the conventional electric sensor for the measurement of stress acting on the support material in the geological environment (soft rock and low inflow). The result of the measurement in the fault zone in 350 m gallery, show that the stresses acting on both shotcrete and steel arch lib exceeded the value which will cause the instability of the gallery. However, as, we found no crack on the surface of the shotcrete. By observation on the surface of shotcrete, thus, it was concluded that careful observation of shotcrete around that section in addition to the monitoring the measured stress was necessary to continue. In other measurement sections, there was no risk for the instability of the gallery as a result of the investigation of the measurement result.

JAEA Reports

Poro-elastic parameter acquisition test using siliceous mudstone (Wakkanai formation)

Aoki, Tomoyuki*; Tani, Takuya*; Sakai, Kazuo*; Koga, Yoshihisa*; Aoyagi, Kazuhei; Ishii, Eiichi

JAEA-Research 2020-002, 83 Pages, 2020/06

JAEA-Research-2020-002.pdf:8.25MB
JAEA-Research-2020-002-appendix(CD-ROM).zip:6.63MB

The Japan Atomic Energy Agency (JAEA) has conducted with the Horonobe Underground Research Project in Horonobe, Teshio-gun, Hokkaido for the purpose of research and development related to geological disposal technology for high-level radioactive wastes in sedimentary soft rocks. The geology around the Horonobe Underground Research Laboratory (HURL) is composed of the Koetoi diatomaceous mudstone layer and the Wakkanai siliceous layer, both of which contain a large amount of diatom fossils. Since these rocks exhibit relatively high porosity but low permeability, it is important to investigate the poro-elastic characteristics of the rock mass. For this objective, it is necessary to measure parameters based on the poro-elastic theory. However, there are few measurement results of the poro-elastic parameters for the geology around HURL, and the characteristics such as dependence on confining pressure are not clearly understood. One of the reasons is that the rocks show low permeability and the pressure control during testing is difficult. Therefore, a poro-elastic parameter measurement test was conducted on the siliceous mudstone of the Wakkanai formation to accumulate measurement results on the poro-elastic parameters and to examine the dependence of the parameters on confining pressure. As a result, some dependency of the poro-elastic parameters on confining pressure was observed. Among the measured or calculated poro-elastic parameters, the drained bulk modulus increased, while the Skempton's pressure coefficient, and the Biot-Wills coefficient in the elastic region decreased with the increase in confining pressure. The measurement results also inferred that the foliation observed in the rock specimens might impact a degree of dependency of those parameters on confining pressure.

Journal Articles

Localized 5$$f^2$$ states in UPd$$_5$$Al$$_2$$ and valence crossover in the Vicinity of Heavy-Fermion superconductivity

Metoki, Naoto; Haga, Yoshinori; Yamamoto, Etsuji; Matsuda, Masaaki*

Journal of the Physical Society of Japan, 87(11), p.114712_1 - 114712_9, 2018/11

 Times Cited Count:2 Percentile:29.78(Physics, Multidisciplinary)

The localized 5$$f$$ states with 5$$f^2$$ ($$^3H_4$$) configuration of U$$^{4+}$$ ion have been revealed in UPd$$_5$$Al$$_2$$. We found that the low-lying states are the same as PrPd$$_5$$Al$$_2$$ flat orbitals with large $$J_z$$ are stabilized by a two-dimensional CEF potential in the unique crystal structure. The present study involves the valence crossover from tetravalent to trivalent in a series of AnPd$$_5$$Al$$_2$$, demonstrated by lattice and/or transport anomaly as well as many body effects in the vicinity of the boundary. The valence instability plays important role for the unusual heavy fermion superconductivity in NpPd$$_5$$Al$$_2$$.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2015

Ishimaru, Tsuneari; Umeda, Koji*; Yasue, Kenichi; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Yokoyama, Tatsunori; Fujita, Natsuko; Shimizu, Mayuko; et al.

JAEA-Research 2016-023, 91 Pages, 2017/02

JAEA-Research-2016-023.pdf:13.33MB

This annual report documents the progress of research and development (R&D) in the 1st fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. In this paper, the current status of R&D activities with previous scientific and technological progress is summarized.

Journal Articles

Analysis of an aspect ratio effect on the stability of external MHD modes in tokamaks with the Newcomb equation

Aiba, Nobuyuki; Tokuda, Shinji; Ishizawa, Tomoko*

Journal of Plasma Physics, 72(6), p.1127 - 1131, 2006/12

 Times Cited Count:1 Percentile:3.81(Physics, Fluids & Plasmas)

We develop the method for the stability analysis of a ideal external magnetohydrodynamic (MHD) mode by solving the eigenvalue problem associated with the two-dimensional Newcomb equation, the inertia free linear ideal MHD equation. This eigenvalue problem can be expected to provide a powerful tool for not only a low-n external MHD mode but also a high-n mode, where n is a toroidal mode number. With this method, we analyze an effect of the aspect ratio on the stability of middle-n (1$$<$$n$$<$$10) external MHD modes in tokamaks; this gets attention for the design research of a high performance tokamak. As the result of this work, we study that external MHD modes become stable as the aspect ratio decreases, and also find that the stability of middle-n external modes becomes important because an effect of a conducting wall is enhanced by reducing the aspect ratio.

Journal Articles

Improvement of chemical stability of polymer electrolyte fuel cell membranes by grafting of new substituted styrene monomers into ETFE films

Chen, J.; Asano, Masaharu; Yamaki, Tetsuya; Yoshida, Masaru

Journal of Materials Science, 41(4), p.1289 - 1292, 2006/02

 Times Cited Count:19 Percentile:56.71(Materials Science, Multidisciplinary)

The MeSt/tBuSt/DVB-grafted polymer electrolyte membrane showed a high performance for the fuel cell applications. The tBuSt contributed the high chemical stability while the MeSt contributed the high conductivity to the resulted membrane. The DVB crosslinker in the membrane further improved the chemical stability. The new polymer electrolyte membrane with a degree of grafting of 36% showed proton conductivity as high as the Gore-Select membrane, and the durability time was about 3 times longer than that of the traditional styrene/DVB-grafted one. Therefore, the MeSt/tBuSt/DVB-grafted polymer electrolyte membrane was more possible to be used for the fuel cells.

Journal Articles

Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films

Chen, J.; Asano, Masaharu; Yamaki, Tetsuya; Yoshida, Masaru

Journal of Membrane Science, 269(1-2), p.194 - 204, 2006/02

 Times Cited Count:131 Percentile:96.56(Engineering, Chemical)

To develop a highly chemically stable polymer electrolyte membrane for application in a direct methanol fuel cell (DMFC), four styrene derivative monomers, m,p-methylstyrene (MeSt), p-tert-butylstyrene (tBuSt), divinylbenzene (DVB) and bis(p,p-vinyl phenyl) ethane (BVPE) were graft copolymerized into poly(ethylene-co-tetrafluoroethylene) (ETFE) films followed by sulfonation and hydrolysis. The latter two monomers were used as crosslinkers. The graft copolymerization was carried out by the $$gamma$$-ray preirradiation method. The influence of the preirradiation dose and the grafting kinetics were investigated in detail. Sulfonation of the grafted ETFE films was performed in a chlorosulfonic acid solution, by which the sulfonation ratio reached about 90%. The newly obtained membrane possesses significantly higher chemical stability than the traditional styrene/DVB-grafted membrane and six times lower methanol permeability compared to the Nafion 112 membrane. Therefore, this study reveals the possibility of the developed inexpensive four monomers-grafted membranes, which could provide an attractive alternative as a substitute for the expensive Nafion membranes for DMFC applications.

Journal Articles

Critical $$beta$$ analyses with ferromagnetic and plasma rotation effects and wall geometry for a high $$beta$$ steady state tokamak

Kurita, Genichi; Bialek, J.*; Tsuda, Takashi; Azumi, Masafumi*; Ishida, Shinichi; Navratil, G. A.*; Sakurai, Shinji; Tamai, Hiroshi; Matsukawa, Makoto; Ozeki, Takahisa; et al.

Nuclear Fusion, 46(2), p.383 - 390, 2006/02

 Times Cited Count:9 Percentile:33.28(Physics, Fluids & Plasmas)

It is shown that critical beta is decreased by ferromagnetic effect by about 8% for $$mu$$/$$mu$$$$_{0}$$$$sim$$2, $$mu$$ and $$mu$$$$_{0}$$ denoting the permeability of ferromagnetic wall and vacuum, respectively, for tokamak of aspect ratio 3. The existence of the stability window for resistive wall mode opened by both effects of the toroidal plasma rotation and the plasma dissipation, which was not observed for high aspect ratio tokamak, is found for tokamak of aspect ratio 3. The effect of ferromagnetism on them is also investigated. The critical beta analyses of NCT (National Centralized Tokamak) plasma using VALEN code are started with stabilizing plate and vacuum vessel geometry with finite resistivity, and the results for passive effect of stabilizing plate are obtained. The calculations including stabilizing effect of the vacuum-vessel and also active feedback control are also performed for present design of NCT plasma.

Journal Articles

Multipass beam breakup in energy recovery linacs

Pozdeyev, E.*; Tennant, C.*; Bisognano, J. J.*; Sawamura, Masaru; Hajima, Ryoichi; Smith, T. I.*

Nuclear Instruments and Methods in Physics Research A, 557(1), p.176 - 188, 2006/02

 Times Cited Count:12 Percentile:65.95(Instruments & Instrumentation)

no abstracts in English

Journal Articles

Large-scale direct simulation of two-phase flow structure around a spacer in a tight-lattice nuclear fuel bundle

Takase, Kazuyuki; Yoshida, Hiroyuki; Ose, Yasuo*; Akimoto, Hajime

Computational Fluid Dynamics 2004, p.649 - 654, 2006/00

no abstracts in English

Journal Articles

Design study of national centralized tokamak facility for the demonstration of steady state high-$$beta$$ plasma operation

Tamai, Hiroshi; Akiba, Masato; Azechi, Hiroshi*; Fujita, Takaaki; Hamamatsu, Kiyotaka; Hashizume, Hidetoshi*; Hayashi, Nobuhiko; Horiike, Hiroshi*; Hosogane, Nobuyuki; Ichimura, Makoto*; et al.

Nuclear Fusion, 45(12), p.1676 - 1683, 2005/12

 Times Cited Count:15 Percentile:48.09(Physics, Fluids & Plasmas)

Design studies are shown on the National Centralized Tokamak facility. The machine design is carried out to investigate the capability for the flexibility in aspect ratio and shape controllability for the demonstration of the high-beta steady state operation with nation-wide collaboration, in parallel with ITER towards DEMO. Two designs are proposed and assessed with respect to the physics requirements such as confinement, stability, current drive, divertor, and energetic particle confinement. The operation range in the aspect ratio and the plasma shape is widely enhanced in consistent with the sufficient divertor pumping. Evaluations of the plasma performance towards the determination of machine design are presented.

Journal Articles

Nonlinear behaviour of collisionless double tearing mode induced by electron inertia

Matsumoto, Taro; Naito, Hiroshi*; Tokuda, Shinji; Kishimoto, Yasuaki*

Nuclear Fusion, 45(11), p.1264 - 1270, 2005/11

 Times Cited Count:12 Percentile:41.3(Physics, Fluids & Plasmas)

A gyrokinetic particle simulation is executed to clarify the effect of the electron inertia on the MHD phenomena in the reversed shear configuration (RSC) of a cylindrical tokamak plasma. It is found that the collisionless (kinetic) double tearing modes grow up at the Alfv$'e$n time scale, and nonlinearly induce the internal collapse when the helical flux at the magnetic axis is less than that at the outer resonant surface. After the internal collapse, the secondary reconnection is induced by the current concentration due to the $$m=2$$ convective flow. It is also clarified that a nonlinear dynamics accompanied with the elementary processes caused by the $$m=2$$ flow can generate a new RSC with resonant surfaces. In the presence of the density gradient, after the full reconnection induced by the $$m=2$$ mode, the radial electric field is found to be generated due to the difference of the $${bf E} times {bf B}$$ motion between ions and electrons. However, the intensity of the radial field is not so large as that induced by the collisionless kink mode.

Journal Articles

System of the advanced volume reduction facilities for LLW at JAERI

Higuchi, Hidekazu; Momma, Toshiyuki; Nakashio, Nobuyuki; Kozawa, Kazushige; Tohei, Toshio; Sudo, Tomoyuki; Mitsuda, Motoyuki; Kurosawa, Shigenobu; Hemmi, Ko; Ishikawa, Joji; et al.

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10

The JAERI constructed the Advanced Volume Reduction Facilities(AVRF). The AVRF consists of the Waste Size Reduction and Storage Facilities(WSRSF) and the Waste Volume Reduction Facilities(WVRF). By operating the AVRF, it will be able to produce waste packages for final disposal and to reduce the amount of the low level solid wastes. Cutting installations for large wastes such as tanks in the WSRSF have been operating since June 1999. The wastes treated so far amount to 600 m$$^{3}$$ and the volume reduction ratio is around 1/3. The waste volume reduction is carried out by a high-compaction process or melting processes in the WVRF. The metal wastes from research reactors are treated by the high-compaction process. The other wastes are treated by the melting processes that enable to estimate radioactivity levels easily by homogenization and get chemical and physical stability. The WVRF have been operating with non-radioactive wastes since February 2003 for the training and the homogeneity investigation in the melting processes. The operation with radioactive wastes will start in FY2005.

Journal Articles

Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U

Oyama, Naoyuki; Sakamoto, Yoshiteru; Isayama, Akihiko; Takechi, Manabu; Gohil, P.*; Lao, L. L.*; Snyder, P. B.*; Fujita, Takaaki; Ide, Shunsuke; Kamada, Yutaka; et al.

Nuclear Fusion, 45(8), p.871 - 881, 2005/08

 Times Cited Count:107 Percentile:95.66(Physics, Fluids & Plasmas)

The grassy ELM is characterized by the high frequency periodic collapse up to $$sim$$kHz, which is $$sim$$15 times faster than that for type I ELM. A divertor peak heat flux due to grassy ELMs is less than 10% of that for type I ELMs. This smaller heat flux is caused by narrower radial extent of the collapse of temperature pedestal. The different radial extent between type I ELMs and grassy ELMs qualitatively agrees with the different radial distribution of the eigen function of the ideal MHD stability analysis. The ratio of ELM energy loss for grassy ELMs to the pedestal stored energy was 0.4-1%. In high triangularity regime, ELM amplitude, frequency and type can be changed from type I ELM to high frequency grassy ELM as counter plasma rotation was increased. In low triangularity regime, on the other hand, the complete ELM suppression (QH-mode) has been achieved, when the plasma position is optimized with CTR-NBIs. The existence of the edge fluctuations localized in pedestal region may reduce the pedestal pressure, and therefore the QH-mode can be sustained for long time up to 3.4s.

JAEA Reports

Analysis on non uniform flow in steam generator during steady state natural circulation cooling

Susyadi; Yonomoto, Taisuke

JAERI-Research 2005-011, 64 Pages, 2005/06

JAERI-Research-2005-011.pdf:2.57MB

Steady-state natural circulation (NC) in the PWR was investigated focusing on non uniform flow among steam generator (SG) U-tubes observed in the ROSA/LSTF experiments. In the analysis using the RELAP5/MOD3 code, the SG behavior was analyzed using the partial SG model with one, five, or nine parallel flow paths in the primary side and boundary conditions based on the experiments. The results showed that simulations using the model with five or nine tubes were capable to capture important non uniform phenomena such as reverse flow, fill and dump and stagnant vertical stratification, and the stable SG outlet flow as observed in the experiments. Heat transfer rates to the secondary side were, however, underpredicted by up to 15%. Furthermore, difficulties were found in establishing the steady state condition especially for the low pressure analysis: only when the inlet flow rate was carefully imposed, stable NC behavior was obtained.

261 (Records 1-20 displayed on this page)