Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 223

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Design and beam dynamic studies of a 30-MW superconducting linac for an accelerator-driven subcritical system

Yee-Rendon, B.; Kondo, Yasuhiro; Maekawa, Fujio; Meigo, Shinichiro; Tamura, Jun

Physical Review Accelerators and Beams (Internet), 24(12), p.120101_1 - 120101_17, 2021/12

The Japan Atomic Energy Agency (JAEA) is working on the research and development of a 30-MW continuous wave (CW) proton linear accelerator (linac) for the JAEA accelerator-driven subcritical system (ADS) proposal. The linac will accelerate a 20 mA proton beam to 1.5 GeV, using mainly superconducting cavities. The main challenge for an ADS accelerator is the high reliability required to prevent thermal stress in the subcritical reactor; thus, we pursue a robust lattice to achieve stable operation. To this end, the beam optics design reduces the emittance growth and the beam halo through the superconducting part of the linac. First, we simulated an ideal machine without any errors to establish the operation conditions of the beam. Second, we applied element errors and input beam errors to estimate the tolerance of the linac design. Finally, we implemented a correction scheme to increase the lattice tolerance by reducing the beam centroid offset on the transverse plane. Massive multiparticle simulations and a cumulative statistic of 1$$times$$10$$^{8}$$ macroparticles have shown that the JAEA-ADS linac can operate with less than 1 W/m beam losses in error scenarios.

Journal Articles

Fast fault recovery scenarios for the JAEA-ADS linac

Yee-Rendon, B.; Tamura, Jun; Kondo, Yasuhiro; Nakano, Keita; Takei, Hayanori; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.61 - 65, 2021/10

Japan Atomic Energy Agency (JAEA) is designing a 30 MW CW superconducting proton linac as a major component for the accelerator-driven subcritical system (ADS) project. The main challenge of the linac operation is the high reliability required to suppress thermal stress in the subcritical reactor. To this end, we implemented fault compensation schemes to enable a fast beam recovery; consequently, reducing the beam trip duration. This work presents strategies to increase the fault-tolerance capacity of the JAEA-ADS linac.

Journal Articles

Practical tests of neutron transmission imaging with a superconducting kinetic-inductance sensor

Vu, TheDang; Shishido, Hiroaki*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.

Nuclear Instruments and Methods in Physics Research A, 1006, p.165411_1 - 165411_8, 2021/08

 Times Cited Count:0 Percentile:0.03(Instruments & Instrumentation)

Journal Articles

Multipacting studies for the JAEA-ADS five-cell elliptical superconducting RF cavities

Yee-Rendon, B.; Kondo, Yasuhiro; Maekawa, Fujio; Meigo, Shinichiro; Tamura, Jun; Cicek, E.*

Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.793 - 795, 2021/08

The Five-cell Elliptical Superconducting Radio-Frequency Cavities (SRFC) provide the final acceleration in the JAEA-ADS linac (from 600 MeV to 1.5 GeV); thus, their performance is essential for the success of the JAEA-ADS project. After their optimization of the cavity geometry to achieve a high-acceleration gradient with lower electromagnetic peaks, the next step in the R&D strategy is the accurate estimation of beam-cavity effects which can affect the performance of the cavities. To this end, multipacting studies were developed to investigate its effect in the cavity operation regimen and find countermeasures. The results of this study will help in the development of the SRFC models and in the consolidation of the JAEA-ADS project.

Journal Articles

Gallium-effect in a lead-free solder for silver-sheathed superconducting tape

Shamoto, Shinichi; Lee, M. K.*; Fujimura, Yuki; Kondo, Keietsu; Ito, Takashi; Ikeuchi, Kazuhiko*; Yasuda, Satoshi; Chang, L.-J.*

Materials Research Express (Internet), 8(7), p.076303_1 - 076303_6, 2021/07

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

Pb, Ga, and Ga doped lead free Sn-Ag-Cu solders are used to study the gallium effect for the low joint resistivity with silver sheathed DI BISCCO type H tapes. The results are reported.

Journal Articles

Present status of the R&D of the superconducting linac for the JAEA-ADS

Yee-Rendon, B.; Tamura, Jun; Kondo, Yasuhiro; Hasegawa, Kazuo; Maekawa, Fujio; Meigo, Shinichiro; Oguri, Hidetomo

JPS Conference Proceedings (Internet), 33, p.011043_1 - 011043_5, 2021/03

The Japan Atomic Energy Agency (JAEA) has been working in the research and development of an Accelerator Driven Subcritical System (ADS) for the transmutation of nuclear waste. The ADS proposed by JAEA consists of a CW proton linac of 30 MW coupling with a subcritical core reactor. The accelerator will be operated with a beam current of 20 mA. Normal conducting Radio-Frequency Cavities (NRFC) and Superconducting Radio-Frequency Cavities (SRFC) will be used to achieve final energy of 1.5 GeV, and the SRFC will be employed for the main part of the acceleration: from 2 MeV to 1.5 GeV. In the first stage of the accelerator development, the focus was the design and optimization of the SRFC models and the beam optics. For the SRFC sections, the acceleration will be done by using Half Wave Resonators (HWR), Single Spokes (SS), and Elliptical cavities (Ellip) operating with a frequency of 162, 324, and 648 MHz, respectively. The beam optics were optimized satisfying the equipartitioning condition to control the emittance growth, which helped to reduce the beam halos and the beam loss.

Journal Articles

Homogeneity of neutron transmission imaging over a large sensitive area with a four-channel superconducting detector

Vu, TheDang; Shishido, Hiroaki*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.

Superconductor Science and Technology, 34(1), p.015010_1 - 015010_10, 2021/01

 Times Cited Count:2 Percentile:72.02(Physics, Applied)

Journal Articles

Error studies for the JAEA-ADS linac

Yee-Rendon, B.; Tamura, Jun; Kondo, Yasuhiro; Maekawa, Fujio; Meigo, Shinichiro; Oguri, Hidetomo

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.33 - 37, 2020/09

Japan Atomic Energy Agency (JAEA)- Accelerator Driven System (ADS) linac consists of a CW proton accelerator with a beam current of 20 mA driven with the energy of 1.5 GeV. Most of the beam acceleration is achieved by using superconducting cavities to obtain high acceleration efficiency at CW mode. The main superconducting linac is composed of five families of cavities (Half Wave resonators, Spokes resonators, and Elliptical cavities) with theirs respectively magnets. Due to the large beam power in the linac of 30 MW and the high reliability required for the ADS project, a robust beam optic designed is necessary to have a stable beam operation and control the beam loss power. The JAEA-ADS linac is composed of several sections and components; thus, the misalignment of these elements together with field errors enhance the beam loss rate and compromises the safety of the linac. To this end, an error linac campaign was launched to estimate the error tolerance of the components and implement a correction scheme to reduce the beam loss power around the linac.

Journal Articles

Kinetic inductance neutron detector operated at near critical temperature

Vu, TheDang; Nishimura, Kazuma*; Shishido, Hiroaki*; Harada, Masahide; Oikawa, Kenichi; Miyajima, Shigeyuki*; Hidaka, Mutsuo*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.

Journal of Physics; Conference Series, 1590, p.012036_1 - 012036_9, 2020/07

 Times Cited Count:0 Percentile:0.01

Journal Articles

Beam optics design of the superconducting region of the JAEA ADS

Yee-Rendon, B.; Kondo, Yasuhiro; Maekawa, Fujio; Meigo, Shinichiro; Tamura, Jun

Journal of Physics; Conference Series, 1350(1), p.012120_1 - 012120_5, 2019/12

Journal Articles

Electromagnetic design of the low beta cavities for the JAEA ADS

Yee-Rendon, B.; Kondo, Yasuhiro; Maekawa, Fujio; Meigo, Shinichiro; Tamura, Jun

Journal of Physics; Conference Series, 1350(1), p.012197_1 - 012197_7, 2019/12

Journal Articles

Design of the elliptical superconducting cavities for the JAEA ADS

Yee-Rendon, B.; Kondo, Yasuhiro; Maekawa, Fujio; Meigo, Shinichiro; Tamura, Jun

Journal of Physics; Conference Series, 1350(1), p.012198_1 - 012198_6, 2019/12

Journal Articles

Cavity and optics design of the accelerator for the JAEA-ADS project

Yee-Rendon, B.; Tamura, Jun; Kondo, Yasuhiro; Hasegawa, Kazuo; Maekawa, Fujio; Meigo, Shinichiro; Oguri, Hidetomo

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.107 - 111, 2019/07

Journal Articles

Neutron flux spectrum revealed by Nb-based current-biased kinetic inductance detector with a $$^{10}$$B conversion layer

Miyajima, Shigeyuki*; Shishido, Hiroaki*; Narukami, Yoshito*; Yoshioka, Naohito*; Fujimaki, Akira*; Hidaka, Mutsuo*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Arai, Masatoshi*; et al.

Nuclear Instruments and Methods in Physics Research A, 842, p.71 - 75, 2017/01

 Times Cited Count:12 Percentile:84.86(Instruments & Instrumentation)

Journal Articles

Analysis of maximum voltage transient of JT-60SA toroidal field coils in case of fast discharge

Novello, L.*; Cara, P.*; Coletti, A.*; Gaio, E.*; Maistrello, A.*; Matsukawa, Makoto; Philipps, G.*; Tomarchio, V.*; Yamauchi, Kunihito

IEEE Transactions on Applied Superconductivity, 26(2), p.4700507_1 - 4700507_7, 2016/03

 Times Cited Count:4 Percentile:32.33(Engineering, Electrical & Electronic)

Journal Articles

Present status of manufacturing and R&Ds for the JT-60SA tokamak

Higashijima, Satoru; Kamada, Yutaka; Barabaschi, P.*; Shirai, Hiroshi; JT-60SA Team

Fusion Science and Technology, 68(2), p.259 - 266, 2015/09

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Manufacturing study and trial fabrication of radial plate for ITER toroidal field coil

Abe, Kanako*; Nakajima, Hideo; Hamada, Kazuya; Okuno, Kiyoshi; Kakui, Hideo*; Yamaoka, Hiroto*; Maruyama, Naoyuki*

IEEE Transactions on Applied Superconductivity, 16(2), p.807 - 810, 2006/06

 Times Cited Count:11 Percentile:53.12(Engineering, Electrical & Electronic)

no abstracts in English

Journal Articles

Control and instrumentation for the ITER magnet system

Yoshida, Kiyoshi; Takahashi, Yoshikazu; Iida, Hiromasa

IEEE Transactions on Applied Superconductivity, 16(2), p.775 - 778, 2006/06

 Times Cited Count:1 Percentile:12.39(Engineering, Electrical & Electronic)

The ITER superconducting coil system consists of 18 TF coils, 6 PF coils, 6 CS modules, 18 Correction Coils and their feeders. An extensive measurement and control system is required to monitor and to control these coils and feeders for safety and optimal operational availability. For each coil, both current and helium are supplied from external systems and are controlled from a central control system that manages flow distribution at each cooling pass to smooth the cryoplant loads by a virtual model of the coil thermo-hydraulic system. Quench detection is provided as stand alone system. Monitoring of the electric insulation system inside the coils is performed to detect incipient problems before serious damage. The ITER will procure directly all sensors, wires, electrical insulation breaks and cryogenic components for all the coils and feeders to a common specification. This will avoid duplication of qualification work and guarantee a common interface. This paper introduces the requirements and specifications of the control and instrumentation for the ITER magnet system.

Journal Articles

Design study of superconducting coils for the fusion DEMO plant at JAERI

Isono, Takaaki; Koizumi, Norikiyo; Okuno, Kiyoshi; Kurihara, Ryoichi; Nishio, Satoshi; Tobita, Kenji

Fusion Engineering and Design, 81(8-14), p.1257 - 1261, 2006/02

 Times Cited Count:5 Percentile:38.34(Nuclear Science & Technology)

In order to realize an economically competitive power generation system, generation of a higher field is required. Toroidal Field (TF) coils of fusion DEMO plant at JAERI are required to generate magnetic field of 16 to 20 T. To realize this high field, advanced superconducting materials, such as Nb$$_3$$Al and high temperature superconductor (HTS), are considered. HTS has enough performance in a 20-T field at 4 K, and a forced-cooled type HTS conductor using a silver alloy sheathed Bi-2212 round wire has been proposed. Required areas of superconductor, structure, stabilizer, coolant and insulator in the cross section of coil winding have been calculated. However, there are many technical issues to be solved, such as accurate temperature control during heat treatment in an atmosphere of oxygen. On the other hand, a large coil using Nb$$_3$$Al has been developed by JAERI, and major technology to fabricate a 16-T Nb$$_3$$Al coil was developed. Validity and issues of grading the winding area are discussed, and there is a possibility to increase a field up to around 17 T using the method.

Journal Articles

Fracture mechanics analysis including the butt joint geometry for the superconducting conductor conduit of the national centralized tokamak

Takahashi, Hiroyuki*; Kudo, Yusuke; Tsuchiya, Katsuhiko; Kizu, Kaname; Ando, Toshinari*; Matsukawa, Makoto; Tamai, Hiroshi; Miura, Yukitoshi

Fusion Engineering and Design, 81(8-14), p.1005 - 1011, 2006/02

 Times Cited Count:2 Percentile:18.25(Nuclear Science & Technology)

This paper presents dependence of the stress intensity factor, around the defect in the butt joint welding of a superconducting conductor conduit, on a geometrical factor estimated by fracture mechanics analysis. The stress intensity factor can be estimated by the Newman-Raju equation about CICC section, but the effect of the difference between the geometry assumed in the equation and CICC has not been clarified yet. Therefore, the three-dimensional finite element method (3D-FEM) is performed to estimate the geometrical factor. As a result, the Newman-Raju equation is considered to be available for the assessment of the fracture toughness of the conduit of rectangular shape because the maximum stress intensity factor by 3-D FEM is only 3% larger than that by the Newman-Raju equation in the maximum postulated defect.

223 (Records 1-20 displayed on this page)