Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Computation speeds and memory requirements of mesh-type ICRP reference computational phantoms in Geant4, MCNP6, and PHITS

Yeom, Y. S.*; Han, M. C.*; Choi, C.*; Han, H.*; Shin, B.*; Furuta, Takuya; Kim, C. H.*

Health Physics, 116(5), p.664 - 676, 2019/05

 Times Cited Count:10 Percentile:66.45(Environmental Sciences)

Recently, Task Group 103 of the ICRP developed the mesh-type reference computational phantoms (MCRPs), which are planned for use in future ICRP dose coefficient calculation. Performance of major Monte Carlo particle transport codes (Geant4, MCNP6, and PHITS) were tested with MCRP. External and internal exposure of various particles and energies were calculated and the computational times and required memories were compared. Additionally calculation for voxel-mesh phantom was also conducted so that the influence of different mesh-representation in each code was studied. Memory usage of MRCP was as large as 10 GB with Geant4 and MCNP6 while it is much less with PHITS (1.2 GB). In addition, the computational time required for MRCP tends to increase compared to voxel-mesh phantoms with Geant4 and MCNP6 while it is equal or tends to decrease with PHITS.

Journal Articles

Multi-threading performance of Geant4, MCNP6, and PHITS Monte Carlo codes for tetrahedral-mesh geometry

Han, M. C.*; Yeom, Y. S.*; Lee, H. S.*; Shin, B.*; Kim, C. H.*; Furuta, Takuya

Physics in Medicine & Biology, 63(9), p.09NT02_1 - 09NT02_9, 2018/05

 Times Cited Count:8 Percentile:41.11(Engineering, Biomedical)

The multi-threading computation performances of the Geant4, MCNP6, and PHITS codes were evaluated using three tetrahedral-mesh phantoms with different complexity. Photon and neutron transport simulations were conducted and the initialization time, calculation time, and memory usage were measured as a function of the number of threads N used in the simulation. The initialization time significantly increases with the complexity of the phantom, but not much with the number of the threads. For the calculation time, Geant4 showed good parallelization efficiency with multi-thread computation (30 times speed-up factor for N = 40) adopting the private tallies while saturation of the speed-up factor were observed in MCNP6 and PHITS (10 and a few times for N = 40) due to the time delay for the sharing tallies. On the other hand, Geant4 requires larger memory specification and the memory usage rapidly increases with the number of threads compared to MCNP6 or PHITS. It is notable that when compared to the other codes, the memory usage of PHITS is much smaller, regardless of both the complexity of the phantom and the number of the threads.

Oral presentation

Developments toward radiation dose assessment using next generation polygon human phantoms

Furuta, Takuya; Sato, Kaoru; Takahashi, Fumiaki

no journal, , 

Voxel-based computational human phantoms have been used for radiation dose assessment with Monte Carlo radiation transport simulation codes. However, development of polygon-based computation humans becomes popular due to advantages on description of thin layer tissues and small organs. International Commission on Radiological Protection (ICRP) also announced to adopt polygon human phantoms as the reference phantoms. We therefore introduced a function to treat tetrahedral-mesh geometry, a type of polygon geometry, into Particle and Heavy Ion Transport code Systems (PHITS). Along this implementation, we also developed an efficient transport algorithm with tetrahedral-mesh geometry, which allows to reduce the computational time to 1/4 of the voxel-mesh calculation using the same precision computational human phantom. We also started a development of new polygon-based human phantoms based on Japanese voxel phantoms. The complete version will be published hopefully next year.

3 (Records 1-3 displayed on this page)
  • 1