Refine your search:     
Report No.
 - 
Search Results: Records 1-127 displayed on this page of 127
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of $$^{93}$$Zr, $$^{93}$$Mo, $$^{107}$$Pd and $$^{126}$$Sn analytical methods for radioactive waste from Fukushima Daiichi Nuclear Power Station

Aono, Ryuji; Sato, Yoshiyuki; Shimada, Asako; Tanaka, Kiwamu; Ueno, Takashi; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Technology 2017-025, 32 Pages, 2017/11

JAEA-Technology-2017-025.pdf:1.45MB

We have developed analytical methods for $$^{93}$$Zr, $$^{93}$$Mo, $$^{107}$$Pd and $$^{126}$$Sn, which are considered important in terms of the safety assessment of radioactive waste disposal. The methods are specialized for the wastes left after Fukushima accident. As the main analytical sample, we assumed accumulated water / treated water collected at Fukushima Daiichi Nuclear Power Station. As for $$^{93}$$Zr, $$^{93}$$Mo, $$^{107}$$Pd and $$^{126}$$Sn contained in this accumulated water / treated water, we have worked on the development of separation and purification method of target nuclide and improvement of recovery, and summarized these results in this report.

JAEA Reports

Annual report of Nuclear Emergency Assistance and Training Center (April 1, 2016 - March 31, 2017)

Nuclear Emergency Assistance and Training Center

JAEA-Review 2017-020, 45 Pages, 2017/11

JAEA-Review-2017-020.pdf:15.31MB

The Japan Atomic Energy Agency has the responsibility of providing technical assistance to the national and local governments in case of a nuclear or radiological emergency based on these Acts. In order to fulfill the tasks as the designated public institution, the Nuclear Emergency Assistance and Training Center, NEAT, is the window center of the technical assistance in case of emergency, and dispatches experts of JAEA, supplies equipment and materials, and gives them technical advice and information, to the national and local governments with emergency. In normal time, the NEAT provides the technical assistance such as the exercises and training courses concerning nuclear preparedness and response to emergency responders including the national and local government officers in addition to JAEA staff members. This report introduces the results of activities in FY2016, conducted by NEAT in accordance with the third medium and long-term plan.

JAEA Reports

Waste Technical Standards Working Group annual report 2016

Waste Technical Standards Working Group

JAEA-Review 2017-017, 112 Pages, 2017/11

JAEA-Review-2017-017.pdf:2.87MB

In Japan Atomic Energy Agency, JAEA, a Waste Technical Standards Working Group has established since FY2015. The Working Group is composed of the members from waste management sections in each site in JAEA and from Radioactive Waste Management and Disposal Project Department. In this Working Group, we discussed quality management on conditioning waste packages, methodologies to evaluate the radioactivity concentration and measures for dismantling waste. This annual report summarizes the results of discussion in FY2016.

JAEA Reports

Study on crystalline rock aiming at evaluation method of long-term behavior of rock mass (Joint research)

Fukui, Katsunori*; Hashiba, Kimihiro*; Matsui, Hiroya

JAEA-Research 2017-010, 61 Pages, 2017/11

JAEA-Research-2017-010.pdf:16.86MB

JAEA has started this study as a collaboration study with Tokyo University from 2016. In the fiscal year of 2016, creep testing on Tage tuff was continuously conducted. Existing theory of rate process and stochastic process was modified to be applied to evaluate effects of water, and then the modified theory was validated based on the results of strength and creep tests performed under dry and wet conditions. Furthermore, effects of water contents on stress-strain curves were examined by uniaxial compression testing under various water content conditions.

JAEA Reports

Study on effects of coupled phenomenon on long-term behavior for crystalline rock (Joint research)

Kimoto, Kazushi*; Ichikawa, Yasuaki*; Matsui, Hiroya

JAEA-Research 2017-009, 18 Pages, 2017/11

JAEA-Research-2017-009.pdf:6.5MB

JAEA has started this study as joint research with Okayama University from 2016. In fiscal year 2016, several kinds of elastic wave velocity were measured using ultra sonic sensors and laser Doppler vibrometer to evaluate the anisotropy of different elastic wave in granite. The velocity measurements were carried out focused on transmitted wave and surface wave. The results showed that strong anisotropy was observed in transmitted P- wave velocity while weak anisotropy was observed in transmitted S-wave and group velocity estimated by surface velocity measurement. In addition, data obtained from surface velocity measurement was partitioned into transmitted and reflected waves and analyzed them in detail. It resulted that elastic wave due to mineral particles consist of granite was dispersed; however, significant dispersion was only observed at specific location.

JAEA Reports

Cutting operation of simulated fuel assembly heating examination by AWJ

Abe, Yuta; Nakagiri, Toshio; Watatani, Satoshi*; Maruyama, Shinichiro*

JAEA-Technology 2017-023, 46 Pages, 2017/10

JAEA-Technology-2017-023.pdf:8.01MB

This is a report on Abrasive Water Jet (AWJ) cutting work carried out on specimen, which was used for Simulated Fuel Assembly Heating Examination by Collaborative Laboratories for Advanced Decommissioning Science (CLADS) molten core behavior analysis group in February 2016. The simulated fuel assembly is composed of Zirconia for the outer crucible/simulated fuel, stainless steel for the control blade and Zircaloy (Zr) for the cladding tube/channel box. Therefore, it is necessary to cut at once substances having a wide range of fracture toughness and hardness. Moreover, it is a large specimen with an approximate size of 300 mm. In addition, epoxy resin has high stickiness, making it more difficult to cut. Considering these effects, AWJ cutting was selected. The following two points were devised, and this specimen could be cut with AWJ. If it was not possible to cut at one time like a molten portion of boride, it was repeatedly cut. By using Abrasive Suspension Jet (ASJ) system with higher cutting ability than Abrasive Injection Jet (AIJ, conventional method) system, cutting time was shortened. As a result of this work, the cutting method in Simulated Fuel Assembly Heating Examination was established. Incidentally, in the cutting operation, when the cutting ability was lost at the tip of the AWJ, a curved cut surface, which occurs when the jet flowed away from the feeding direction, could be confirmed at the center of the test body. From the next work, to improve the cutting efficiency, we propose adding a mechanism such as turning the cutting member itself for re-cutting from the exit side of the jet and appropriate traverse speed to protect cut surface.

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2017

Ishibashi, Masayuki; Hama, Katsuhiro; Iwatsuki, Teruki; Matsui, Hiroya; Takeuchi, Ryuji; Ikeda, Koki; Mikake, Shinichiro; Iyatomi, Yosuke; Sasao, Eiji; Koide, Kaoru

JAEA-Review 2017-019, 29 Pages, 2017/10

JAEA-Review-2017-019.pdf:3.21MB

The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami City in Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified three important issues on the geoscientific research program: "Development of countermeasure technologies for reducing groundwater inflow", "Development of modelling technologies for mass transport" and "Development of drift backfilling technology", based on the latest results of the synthesizing research and development (R&D). These R&D on three remaining important issues have been carrying out on the MIU project. This report summarizes the R&D activities planned for fiscal year 2017 based on the MIU Master Plan updated in 2015 and so on.

JAEA Reports

Status of study of long-term assessment of transport of radioactive contaminants in the environment of Fukushima; As a part of dissemination of evidence-based information

Tsuruta, Tadahiko; Niizato, Tadafumi; Nakanishi, Takahiro; Dohi, Terumi; Nakama, Shigeo; Funaki, Hironori; Misono, Toshiharu; Oyama, Takuya; Kurikami, Hiroshi; Hayashi, Seiji*; et al.

JAEA-Review 2017-018, 86 Pages, 2017/10

JAEA-Review-2017-018.pdf:17.58MB

Since the accidents at Fukushima Daiichi Nuclear Power Plant following the Tohoku Region Pacific Coast Earthquake on March 11th, 2011, Fukushima Environmental Safety Center has carried out research on natural mobilization of radionuclide (especially radiocesium) and future forecast from forest to water system and surrounding residential areas. The report summarizes the latest results that have been accumulated from each study field, of our agency together with the other related research organizations. The contents of the report is to be used as evidence-based information for the QA-styled pages in the website of JAEA Sector of Fukushima Research and Development at the time of next renewal.

JAEA Reports

Cladding tube burst experiment assumed MA fuel pin for transmutation physics experimental facility

Sugawara, Takanori; Tsujimoto, Kazufumi

JAEA-Research 2017-011, 35 Pages, 2017/10

JAEA-Research-2017-011.pdf:4.88MB

The construction of Transmutation Physics Experimental Facility (TEF-P) is planned in the J-PARC project. TEF-P is a critical assembly and it will treat minor actinide (MA) fuel in the experiment. The temperature when the air cooling for the TEF-P core would stop was estimated but there were no data to evaluate the soundness of the MA fuel pin. To set a tentative limit temperature for the TEF-P core, cladding tube burst experiment was performed. As the result, the cladding tube burst occurred at 660$$^{circ}$$C as the severest case. Through these results and the estimation of creep rupture time, the tentative limit temperature for the TEF-P core was set to 600$$^{circ}$$C.

JAEA Reports

Data of groundwater chemistry obtained in the Horonobe Underground Research Laboratory Project (FY2014-2016)

Miyakawa, Kazuya; Mezawa, Tetsuya; Mochizuki, Akihito; Sasamoto, Hiroshi

JAEA-Data/Code 2017-012, 60 Pages, 2017/10

JAEA-Data-Code-2017-012.pdf:7.94MB
JAEA-Data-Code-2017-012-appendix(CD-ROM).zip:0.09MB

Development of technologies to investigate properties of deep geological environment and model development of geological environment have been pursued in "Geoscientific Research" in the Horonobe Underground Research Laboratory (Horonobe URL) project. A geochemical model which is a part of geological environment model requires the data of groundwater chemistry around the Horonobe URL for the development. This report summarizes the data obtained for 3 years from the fiscal year 2014 to 2016, especially for the results for measurement of physico-chemical parameters and analysis of groundwater chemistry, in the Horonobe URL project.

JAEA Reports

Evaluation items to attain safety requirements in fuel and core designs for commercial HTGRs

Nakagawa, Shigeaki; Sato, Hiroyuki; Fukaya, Yuji; Tokuhara, Kazumi; Ohashi, Hirofumi

JAEA-Technology 2017-022, 32 Pages, 2017/09

JAEA-Technology-2017-022.pdf:3.59MB

As for the design of commercial HTGRs, the fuel design, core design, reactor coolant system design, secondary helium system design, decay heat removal system design and confinement system design are very important and quite different from those of LWRs. To contribute the establishment of the safety standards for commercial HTGRs, the evaluation items to attain safety requirements in fuel and core designs were studied. In this study, the excellence features of HTGRs based on passive safety or inherent safety were fully reflected. Additionally, concerning the core design, the stability to spatial power oscillation in reactor core of HTGR was studied. The evaluation items as the result of the study are applicable to the safety design of commercial HTGRs in the future.

JAEA Reports

Analysis of meteorological observation data for the atmospheric diffusion calculation; FY2005-2015

Nishimura, Tomohiro; Onuma, Toshimitsu*; Mizutani, Tomoko; Nakano, Masanao

JAEA-Technology 2017-019, 60 Pages, 2017/09

JAEA-Technology-2017-019.pdf:3.2MB

The meteorological observation has been performed since 1969's in the Nuclear Fuel Cycle Engineering Laboratories, JAEA after 1974. The meteorological observation data has been applied for the calculation of the atmospheric diffusion of radioactive wastes since the hot run was started 1977. This report presents statistical results of meteorological observation based on the decadal data from fiscal year 2005 to 2015. The characteristics of atmospheric diffusion related to the meteorological parameter are also discussed in this report.

JAEA Reports

Assessment report on research and development activities in FY2016; Activity "Research and development on high temperature gas-cooled reactor and related heat application technology" (Interim report)

Tatematsu, Kenji; Nishihara, Tetsuo

JAEA-Evaluation 2017-001, 107 Pages, 2017/09

JAEA-Evaluation-2017-001.pdf:13.46MB

President of Japan Atomic Energy Agency consulted with the "Evaluation Committee of Research Activities for High Temperature Gas-cooled Reactor and Related Hydrogen Production Technology" (hereinafter referred to as "Evaluation Committee"), which consists of specialists in the fields of the evaluation subjects of high temperature gas-cooled reactor and related heat application technology, about the relevance of the management and research activities of the HTGR Hydrogen and Heat Application Research Center during the period from April 2015 to March 2017. The assessment of the Evaluation Committee concluded with a score of B for the confirmation of adjustability to the new regulation standard for restarting HTTR and for the development of hydrogen production technology, a score of A for the design of HTTR-GT/H$$_{2}$$ test plant completing all equipment design specification and for the development exceeding the original scope of an oxidation resistant fuel element containing SiC. The Evaluation Committee concluded with a score of A for the overall activity. In addition, the Evaluation Committee recommended that the judgement to move to the construction phase of the HTTR-GT/H$$_{2}$$ test plant be made after 3-4 years, after the HTTR will be restarted and the thermal load fluctuation tests using HTTR will be carried out. This report lists the members of the Evaluation Committee and outlines the method and procedure of the assessment. The assessment report by the Evaluation Committee is attached.

JAEA Reports

Investigation and measures of abnormal events of helium refrigerator for cryogenic hydrogen system at J-PARC

Aso, Tomokazu; Teshigawara, Makoto; Hasegawa, Shoichi; Aoyagi, Katsuhiro*; Muto, Hideki*; Nomura, Kazutaka*; Takada, Hiroshi; Ikeda, Yujiro

JAEA-Technology 2017-021, 75 Pages, 2017/08

JAEA-Technology-2017-021.pdf:33.03MB

Liquid hydrogen is employed as a cold neutron moderator material at the spallation neutron source of Materials and Life science experimental Facility of Japan Proton Accelerator Research Complex (J-PARC). From January 2015, it became observable that the differential pressure between heat exchangers and an 80 K adsorber (ADS) in a helium refrigerator system increased with operating time. In November 2015, the differential pressure rise became more significant, leading to degrade the refrigerating performance in cooling liquid hydrogen. In order to investigate the cause of the abnormal differential pressure rise between the heat exchangers and the ADS, we carried out visual inspection inside the heat exchangers and analyzed the impurities contained in the helium gas. Unfortunately, we could not identify the impurities causing the performance degradation, but observed a trace of oil in the inlet piping of the heat exchanger. Based on investigations of the abnormal events occurred in the refrigerators with similar refrigerating capacity at other facilities, we took measures that cleaning the heat exchangers with Freon and replacing the ADS with new one. As a result, the differential pressure rise phenomenon was removed to recover the performance. We have detected oil from the Freon used for cleaning the heat exchangers and at a felt supporting charcoal packed in the ADS. In particular, oil was accumulated in membranous form onto the felt at the entrance side in the ADS. The amount of oil contained in the helium gas was about 10 ppb or so, less than the design value, in the helium refrigerator. However, the oil accumulated onto the felt in the ADS through long operating period may cause abnormal differential pressure rise, leading to the performance degradation of the helium refrigerator. Further study is needed to specify the cause more clearly.

JAEA Reports

System analysis for HTTR-GT/H$$_{2}$$ plant; Safety analysis of HTTR for coupling helium gas turbine and H$$_{2}$$ plant

Sato, Hiroyuki; Yan, X.; Ohashi, Hirofumi

JAEA-Technology 2017-020, 23 Pages, 2017/08

JAEA-Technology-2017-020.pdf:1.23MB

JAEA initiated a nuclear cogeneration demonstration project with helium gas turbine power generation and thermochemical hydrogen production utilizing the HTTR. This study carries out system analysis for the HTTR gas turbine hydrogen cogeneration test plant. The evaluation was conducted for the events newly identified corresponding to the coupling of helium gas turbine and hydrogen production plant to the HTTR. The results showed that loss of load event does not have impact on temperature of fuel and reactor coolant pressure boundary. In addition, reactor coolant pressure does not exceed the evaluation criteria. Furthermore, it was shown that reactor operation can be maintained against temperature transients induced by abnormal events in hydrogen production plant.

JAEA Reports

Phenomenon elucidation experiment for target wastage caused in steam generator of sodium-cooled fast reactor; Corrosion experiment in flowing high-temperature sodium hydroxide environment

Umeda, Ryota; Shimoyama, Kazuhito; Kurihara, Akikazu

JAEA-Technology 2017-018, 70 Pages, 2017/08

JAEA-Technology-2017-018.pdf:9.67MB

In case of the water leak into sodium in a SG of SFRs due to tube failure, reaction jet is formed by sodium-water reaction with exothermic heat. The reaction jet forms highly alkaline environment with high temperature and high pressure, which cause local thinning of adjacent heat transfer tubes (target wastage). In this report, for the purpose of elucidation of target wastage, the authors developed the experimental apparatus and experimental technique which enable the separate evaluation of wastage influence factors, including temperature, impingement velocity, reagent ratio and so on by using high temperature sodium hydroxide as major reaction product and sodium monoxide as secondary reaction product. In addition, the impingement corrosion experiments have been conducted by using high temperature reagents (NaOH and Na$$_{2}$$O). Based on the corrosive data, authors quantitatively evaluated the influence factors of wastage and formulated the average corrosive equations.

JAEA Reports

Clearance of concrete generated from modification activities of JRR-3; Results for measuring and evaluating radioactivity concentration

Ogoshi, Yurie; Satoyama, Tomonori; Kishimoto, Katsumi; Nanri, Tomohiro; Suzuki, Takeshi; Tomioka, Osamu; Takaizumi, Hirohide*; Kanno, Tomoyuki*; Maruyama, Tatsuya*

JAEA-Technology 2017-017, 152 Pages, 2017/08

JAEA-Technology-2017-017.pdf:15.97MB

At Nuclear Science Research Institute, clearance works for about 4,000 tons of extremely low-level radioactive concrete debris, which were generated from the modification activities of JRR-3 from FY 1985 to FY 1989 and stored in the waste storage facility NL, carried out. First of this clearance works, method for measuring and evaluating radioactivity concentration was approved by Minister of MEXT on July 25, 2008. And then, clearance works were started from FY 2009. Measuring and evaluating radioactivity concentration was achieved by using the approved method, and was confirmed by government. And then, clearance works were completed in FY 2014. The clearance concrete was recycled as a material for restoration works of the 2011 off the Pacific coast of Tohoku Earthquake. This report summarizes the results of measuring and evaluating radioactivity concentration, achievement of confirmation by government, recycling of cleared concrete and cost for clearance works.

JAEA Reports

Expansion characteristics of particles in ablation plume measured with resonance absorption spectroscopy; Comparison of neutral atoms of titanium and hafnium

Jung, K.; Miyabe, Masabumi; Akaoka, Katsuaki; Oba, Masaki; Wakaida, Ikuo

JAEA-Research 2017-008, 26 Pages, 2017/08

JAEA-Research-2017-008.pdf:5.99MB

We are developing an analytical method using laser ablation absorption spectroscopy (LAAS) to analyze radioactive waste mixed with zirconium, uranium and so on. It is essential to evaluate the characteristics of the plume formed by the objective particles for LAAS analysis. Therefore, in this study, titanium and hafnium whose chemical properties are similar to those of Zr were chosen as analytical object. And the difference in expanding behavior of the plume due to the weight of the particles was investigated. As a result of changing the height of the probe beam and applying the optical time-of-flight method to the plume, it was found that the influence of the background gas is larger for Ti than Hf. The meaning of the resonance absorption signal of the waste sample mixed with nuclear fuel materials and nuclear reactor materials was understood by this study and basic knowledge to optimize experimental conditions were also obtained.

JAEA Reports

Design database of helium gas turbine for HTTR-GT/H$$_{2}$$ test plant (Revised version)

Imai, Yoshiyuki; Sato, Hiroyuki; Yan, X.

JAEA-Data/Code 2017-011, 39 Pages, 2017/08

JAEA-Data-Code-2017-011.pdf:2.93MB

This report is the revised version of the report titled "Design Database of Helium Gas Turbine for High Temperature Gas-cooled Reactor, JAEA-Data/Code 2016-007" reflecting component design and experimental data analysis results for fission product isotope diffusion through the turbine blade alloy conducted in Fiscal Year 2016.

JAEA Reports

Preparation of uranium and plutonium mixed spike optimized for MOX analysis by isotope dilution mass spectrometry

Horigome, Kazushi; Taguchi, Shigeo; Yamamoto, Masahiko; Kuno, Takehiko; Surugaya, Naoki

JAEA-Technology 2017-016, 20 Pages, 2017/07

JAEA-Technology-2017-016.pdf:1.68MB

Mixed spikes of uranium and plutonium have been prepared for the determination of uranium and plutonium in dissolved MOX solution by isotope dilution mass spectrometry. Enriched uranium metal NBL CRM116 and plutonium metal NBL CRM126 were accurately weighed and then dissolved in nitric acid, respectively. Their dissolved solutions were mixed in a mass ratio of 1 to 2. The preparation values of uranium and plutonium were 1.0530 $$pm$$ 0.0008 mg/g (k=2) of uranium with a $$^{235}$$U relative mass fraction of 93.114 wt% and 2.0046 $$pm$$ 0.0019 mg/g (k=2) of plutonium with a $$^{239}$$Pu relative mass fraction of 97.934 wt%, respectively. The concentrations of uranium and plutonium in spike were confirmed by reverse isotope dilution mass spectrometry using tracer of $$^{233}$$U and $$^{242}$$Pu. Finally, the prepared spike was validated by parallel analysis of simulated sample of dissolved MOX solution. This spike was applied to measure the uranium and plutonium amount content of dissolved MOX solutions using isotope dilution mass spectrometry.

JAEA Reports

Diffusion experiment using block sample of the Toki granite

Hama, Katsuhiro; Iwasaki, Riyo*; Morikawa, Keita*

JAEA-Technology 2017-015, 45 Pages, 2017/07

JAEA-Technology-2017-015.pdf:16.57MB

Tono Geoscience Center of Japan Atomic Energy Agency has been carrying out the Mizunami Underground Research Laboratory Project. The goal of mass transport study is to obtain a better understanding of mass transport phenomena in the geological environment as well as to develop technologies for measurement of the mass transport parameters, model construction, numerical analysis and validation of those technologies. This experiment was planned to understand the influence of the microscopic structure in the rock mass on the mass transport property. The diffusion experiment using rock sample was carried out. The macroscopic and microscopic observations were carried out to understand the distribution of tracer (uranine) after the diffusion experiment. The uranine was observed in the plagioclase, in the grain boundary and in the microfracture in the mineral grains. These results suggested that distribution of mineral and of microfracture could affect the diffusion property of uranine.

JAEA Reports

Technical review on irradiation tests and post-irradiation examinations in JMTR

Neutron Irradiation and Testing Reactor Center

JAEA-Review 2017-016, 170 Pages, 2017/07

JAEA-Review-2017-016.pdf:14.4MB

The Japan Materials Testing Reactor (JMTR) has been contributing to various R&D activities in the nuclear research such as the fundamental research of nuclear materials/ fuels, safety research and development of power reactors, radio isotope (RI) production since its beginning of the operation in 1968. Irradiation technologies and post irradiation examination (PIE) technologies are the important factors for irradiation test research. Now, decontamination and new research reactor construction are common issue in the world according to aging. This report outlines any irradiation and PIE technologies developed at JMTR in 40years and for technology succession and development of human resources.

JAEA Reports

The Catalog of solidification and volume reduction technologies for the treatment of radioactive waste generated by the decommissioning of Fukushima Daiichi Nuclear Power Station

Kato, Jun; Nakagawa, Akinori; Taniguchi, Takumi; Sakakibara, Tetsuro; Nakazawa, Osamu; Meguro, Yoshihiro

JAEA-Review 2017-015, 173 Pages, 2017/07

JAEA-Review-2017-015.pdf:6.67MB

Various radioactive wastes have been generated at the Fukushima Daiichi Nuclear Power Station (1F). To dispose of the wastes underground, it is necessary to make a suitable waste package by the volume reduction and solidification of the wastes. To plan the future decommissioning of 1F, it is also necessary to estimate feasibility of existing treatment technology for those wastes. Therefore the document survey has been performed about volume reduction and solidification technologies that have domestic or foreign experiences of practical treatment for radioactive wastes to assist selection of suitable treatment of the wastes. This report shows the arranged results. The 1F wastes are classified into two groups, homogeneous particulate and liquid wastes and heterogeneous solid wastes. The needful items for the feasibility study such as a technology name, a fundamental principle, treatment efficiency, and characteristic of solidified waste are summarized in each group.

JAEA Reports

Annual report of Nuclear Human Resource Development Center (April 1, 2015 - March 31, 2016)

Nuclear Human Resource Development Center

JAEA-Review 2017-012, 69 Pages, 2017/07

JAEA-Review-2017-012.pdf:4.23MB

This report gathered activity in fiscal year 2015 of Nuclear Human Resource Development Center.

JAEA Reports

Annual report of Nuclear Emergency Assistance and Training Center (April 1, 2015 - March 31, 2016)

Nuclear Emergency Assistance and Training Center

JAEA-Review 2017-011, 54 Pages, 2017/07

JAEA-Review-2017-011.pdf:3.46MB

The Japan Atomic Energy Agency (JAEA) is a designated public institution under the Disaster Countermeasures Basic Act and under the Armed Attack Situations Response Act. Based on these Acts, the JAEA has the responsibility of providing technical support to the national and some local governments in case of a nuclear incident. In case of a nuclear emergency, the Nuclear Emergency Assistance and Training Center (NEAT) dispatches experts of JAEA, supplies the governments with emergency equipment, and gives them technical advice and information. In normal time, NEAT provides various drills/exercises and training courses to nuclear emergency responders. In FY2015, the NEAT accomplished the following tasks: (1) Improvement of hardware and software for technical support activities (2) Human resource development, exercise and training of nuclear emergency responders ; (3) Researches on nuclear emergency preparedness and response, and dissemination of useful information for emergency responders; (4) Arrangements for technical support for aerial monitoring; and (5) Technical contributions to Asian countries on nuclear emergency preparedness and response.

JAEA Reports

Risk communication activity which used "YUME Chisoukan" in the Horonobe Underground Research Center; 2015

Fujiwara, Toshiyuki; Hoshino, Masato; Tokunaga, Hiroaki*; Horikoshi, Hidehiko*

JAEA-Review 2017-008, 128 Pages, 2017/07

JAEA-Review-2017-008.pdf:8.28MB

Horonobe Underground Research Center managed by Japan Atomic Energy Agency (JAEA) is the Japan's best environment to understand the project of geological disposal of high-level radioactive waste, because there is an Underground Research Laboratory (URL) in the center besides an exhibition facility which explains the content of research conducted in the URL. In the area of the center, there is also an exhibition facility for the full-scale model of engineered barrier system of geological disposal. JAEA takes advantage of this opportunity to conduct public hearing including questionnaire research regarding the questions, anxieties and comments by the visitors for geological disposal project. This report summarizes the result of statistical analysis of 2,674 visitors from April to November in 2015.

JAEA Reports

Development of LEAP-III code for evaluation of long-time event progress under tube failure accident in steam generators

Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Kurihara, Akikazu; Hamada, Hirotsugu; Ohshima, Hiroyuki

JAEA-Research 2017-007, 61 Pages, 2017/07

JAEA-Research-2017-007.pdf:4.3MB

For safety assessment of a steam generator of sodium-cooled fast reactors, it is necessary to evaluate the possibility of occurring tube failure propagation and of water leak rate under sodium-water reaction accident. In the previous studies, a computer code called LEAP-II calculating a wastage-type failure propagation and the water leak rate during long-time event progress was developed. In this study, a numerical method to evaluate the possibility of occurring overheating rupture was introduced into the LEAP-II code to expand application range of this code. The completed code is called LEAP-III. The test analysis on a tube bundle configuration demonstrated that the overheating rupture model could provide conservative prediction.

JAEA Reports

Application of controlled-potential coulometry as a primary method for the characterization of plutonium nitrate solutions being used for reference materials (Joint research)

Yamamoto, Masahiko; Holland, M. K.*; Cordaro, J. V.*; Kuno, Takehiko; Surugaya, Naoki

JAEA-Technology 2017-014, 63 Pages, 2017/06

JAEA-Technology-2017-014.pdf:4.38MB

In this study, the controlled-potential coulometry has been applied as a primary method for characterizing the Pu master solutions being used as alternative source material for IDMS spikes. The coulometry system compliance with ISO12183 has been used for measurement. It has been calibrated using equipment traceable to the SI units. Plutonium standard samples have been measured to confirm the accuracy. The relative standard deviation is below 0.05%. The results agree with the reference value within $$pm$$0.05%. It is found that the Pu can be precisely analyzed by the coulometry system. Then, the Pu nitrate solution, which has been purified from mixed oxide powder containing relatively high $$^{239}$$Pu, has been measured. The relative standard deviation is below 0.05%. The relative expanded uncertainty is less than 0.074% at the 95% confidence interval (k=2). It is indicated that coulometric assay of Pu is fit for the purpose of characterizing reference materials.

JAEA Reports

Applicability confirmation test of optimum decay heat evaluation method for HTGR with HTTR (Non-nuclear heating test); Validation of residual heat evaluation model

Honda, Yuki; Inaba, Yoshitomo; Nakagawa, Shigeaki; Yamazaki, Kazunori; Kobayashi, Shoichi; Aono, Tetsuya; Shibata, Taiju; Ishitsuka, Etsuo

JAEA-Technology 2017-013, 20 Pages, 2017/06

JAEA-Technology-2017-013.pdf:2.52MB

Decay heat is one of an important factor for a safety evaluation of depressurized loss-of-forced cooling accident, a representative high consequence accident, in high temperature gas-cooled reactor (HTGR). Traditionally, a conservative decay heat curve is used for safety analysis according to the regulatory standards. On the other hand, there is growing interest in obtaining test data related to decay heat for the use of uncertainty analysis. However, such data has not been obtained for prismatic-type HTGR. Therefore, we have launched a test program to obtain the decay heat data from the HTTR. As an initial step, an applicability confirmation test of decay heat evaluation method for HTGR was conducted in February 2017 without non-nuclear heating condition. This report introduces an estimation method for the decay heat based on test data using HTTR and shows the results of validation of the reactor residual heat evaluation method which will be used to obtain the decay heat data based on test data.

JAEA Reports

Development of temperature measurement technology for control rod using melt wire in High Temperature engineering Test Reactor (HTTR)

Hamamoto, Shimpei; Sawahata, Hiroaki; Suzuki, Hisashi; Ishii, Toshiaki; Yanagida, Yoshinori

JAEA-Technology 2017-012, 20 Pages, 2017/06

JAEA-Technology-2017-012.pdf:7.9MB

A melt wire was installed at the tip of the control rod in order to measure the temperature of High Temperature engineering Test Reactor (HTTR). After experience with reactor scram from the state of reactor power 100%, the melt wire was taken out from the control rod and appearance has been observed visually. In this study, an exclusive device for taking out the melt wire was prepared. The take-out device functions as expected, and the melt wire was safely and reliably taken out using a remote manipulator. And because the visual observation of the melt wire was clearly carried out, we were successful in developing the control rod temperature measurement technology. It was confirmed that the melt wires with a melting point of 505$$^{circ}$$C or less were melted, and the melt wires with a melting point of 651$$^{circ}$$C or more were not melted. Therefore, it was found that the highest arrival temperature of tip of the control rods where the melt wires are installed reaches within the range of 505 to 651$$^{circ}$$C. And it was found that the control rod temperature at the time of reactor scram does not exceed the using temperature criteria (900$$^{circ}$$C) of Alloy 800H of the control rod sleeve.

JAEA Reports

Backfilling test in drilling pits as part of Groundwater REcovery Experiment in Tunnel (GREET) Project

Takayasu, Kentaro; Onuki, Kenji*; Kawamoto, Koji*; Takayama, Yusuke; Mikake, Shinichiro; Sato, Toshinori; Onoe, Hironori; Takeuchi, Ryuji

JAEA-Technology 2017-011, 61 Pages, 2017/06

JAEA-Technology-2017-011.pdf:9.15MB

The Groundwater REcovery Experiment in Tunnel (GREET) was put into effect as development of drift backfilling technologies. This test was conducted by making the Closure Test Drift (CTD) recovered with water after carrying out a plug around 40m distance from northern edge face of horizontal tunnel of depth 500m, for the purpose of investigation of recovering process of rock mass and groundwater under the influence of excavation of tunnel. This report presents the efforts of backfilling investigation using bentonite composite soil and execution of backfilling into borehole pits excavated in the CTD which were carried out in fiscal 2014 as a part of GREET, and succeeding observation results inside pits from September 2014 to March 2016.

JAEA Reports

Study on the evaluation method to determine the radioactivity concentration in radioactive waste generated from post-irradiation examination facilities, 2

Tsuji, Tomoyuki; Hoshino, Yuzuru; Sakai, Akihiro; Sakamoto, Yoshiaki; Suzuki, Yasuo*; Machida, Hiroshi*

JAEA-Technology 2017-010, 75 Pages, 2017/06

JAEA-Technology-2017-010.pdf:2.31MB

It is necessary for reasonable disposal to be studied on evaluation methods to determine radioactivity concentrations in the radioactive wastes, which is generated from post-irradiation examination (PIE) facilities, for establishment of reasonable confirmation methods concerning radioactive wastes generated from research, industrial, and medical facilities. It has been chosen the PIE facilities of NUCLEAR DEVELOPMENT CORPORATION as a model for this study. As a result, it has been confirmed that the theoretical methods are applied for the important nuclides (H-3, C-14, Co-60, Ni-63, Sr-90, Tc-99, Cs-137, Eu-154, U-234, U-235, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Am-241 and Cm-244).

JAEA Reports

Gas-strip methods of dissolved inorganic carbon in groundwater for radiocarbon analysis

Kato, Toshihiro; Iwatsuki, Teruki; Nishio, Tomohiro*

JAEA-Technology 2017-009, 30 Pages, 2017/06

JAEA-Technology-2017-009.pdf:2.6MB

Groundwater age is an important information to infer the groundwater flow. The radiocarbon ($$^{14}$$C) dating of the groundwater is primary method for the evaluation of groundwater flow. The carbon in the groundwater generally exist as a dissolved inorganic carbon (DIC). Though DIC in groundwater samples is usually collected by chemical precipitation method, the method requires lots of preparation to sample the carbon. Furthermore there are problems with the reproducibility on precipitation and measurement value. This study newly examined the application of gas-strip method to collect DIC in groundwater sample by using JAEA-made gas-strip system. The performance of the CO$$_{2}$$ gas-stripping from groundwater and the influence of sulfide are investigated. Based on these results, the operation procedures of gas-strip system and preparation method for the groundwater samples were summarized in this report.

JAEA Reports

Geopolymers and their potential applications in the nuclear waste management field; A Bibliographical study

Cantarel, V.; Motooka, Takafumi; Yamagishi, Isao

JAEA-Review 2017-014, 36 Pages, 2017/06

JAEA-Review-2017-014.pdf:3.37MB

After a necessary decay time, the zeolites used for the water decontamination will eventually be conditioned for their long-term storage. Geopolymer is considered as a potential matrix to manage radioactive cesium and strontium containing waste. For such applications, a correct comprehension of the binder structure, its macroscopic properties, its interactions with the waste and the physico-chemical phenomena occurring in the waste form is needed to be able to judge of the soundness and viability of the material. Although the geopolymer is a young binder, a lot of research has been carried out over the last fifty years and our understanding of this matrix and its potential applications is progressing fast. This review aims at gathering the actual knowledge on geopolymer studies about geopolymer composites, geopolymer as a confinement matrix for nuclear wastes and geopolymer under irradiation. This information will finally provide guidance for the future studies and experiments.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2017 fiscal year

Hanamuro, Takahiro

JAEA-Review 2017-013, 22 Pages, 2017/06

JAEA-Review-2017-013.pdf:2.85MB

As part of the research and development program on geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the 3rd Mid- and Long-term Plan of JAEA, according to the Horonobe URL Project, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are the top priority issues, and schedule for finishing the project and backfill plan will be decides by the end of 2019 Fiscal Year. The Horonobe URL Project is planned to extend over a period of about 20 years. This report summarizes the investigation program for the 2017 fiscal year (2017/2018).

JAEA Reports

A Guide to introducing burnup credit, preliminary version (English translation)

Okuno, Hiroshi; Suyama, Kenya; Ryufuku, Susumu*

JAEA-Review 2017-010, 93 Pages, 2017/06

JAEA-Review-2017-010.pdf:2.47MB

There is an ongoing discussion on the application of burnup credit to the criticality safety controls of facilities that treat spent fuels. With regard to such application of burnup credit in Japan, this document summarizes the current technical status of the prediction of the isotopic composition and criticality of spent fuels, as well as safety evaluation concerns and the current status of legal affairs. This report is an English translation of A Guide to Introducing Burnup Credit, Preliminary Version, originally published in Japanese as JAERI-Tech 2001-055 by the Nuclear Fuel Cycle Facility Safety Research Committee.

JAEA Reports

Annual report of Nuclear Human Resource Development Center (April 1, 2014 - March 31, 2015)

Nuclear Human Resource Development Center

JAEA-Review 2017-009, 72 Pages, 2017/06

JAEA-Review-2017-009.pdf:3.63MB

This report gathered activity in fiscal year 2014 Annual report of Nuclear Human Resource Development Center (April 1, 2014 - March 31, 2015)

JAEA Reports

Development of separation process for Pd by extraction with 5,8-diethyl-7-hydroxy-6-dodecanone oxime

Morita, Yasuji; Yamagishi, Isao

JAEA-Research 2017-006, 27 Pages, 2017/06

JAEA-Research-2017-006.pdf:1.83MB

Separation of Pd by extraction with 5,8-diethyl-7-hydroxy-6-dodecanone oxime (DEHDO) was examined by batch and continuous tests for the purpose of developing Pd separation process. Batch extraction tests using n-dodecane solution of DEHDO revealed that Pd, Zr and Mo were extracted from simulated high-level radioactive liquid wastes (HLLW) and other elements were not, and also showed that the extraction rate was a little slow and a white precipitate appeared in the aqueous phase but its formation could be avoided by raising temperature. The extracted Pd was found to be back-extracted with sodium nitrite. In the continuous extraction tests with simulated HLLW without Zr and Mo, about 98% of Pd were extracted with DEHDO-n-dodecane and 95% of the extracted Pd were back-extracted with sodium nitrite and nitric acid. Continuous extraction test with simulated HLLW with Zr and Mo showed the possibility of the simultaneous separation of Pd and Mo by DEHDO extraction.

JAEA Reports

XAFS measurement of simulated waste borosilicate glass samples (Joint research)

Nagai, Takayuki; Kobayashi, Hidekazu; Sasage, Kenichi; Ayame, Yasuo; Okamoto, Yoshihiro; Shiwaku, Hideaki; Yamanaka, Keisuke*; Ota, Toshiaki*

JAEA-Research 2017-005, 54 Pages, 2017/06

JAEA-Research-2017-005.pdf:16.17MB

Addition of radioactive waste to a borosilicate frit affects the local structures of boron (B) and waste elements in a waste glass. Synchrotron XAFS measurement was applied to investigate the local structural changes by using simulated waste borosilicate glass samples. Following results were obtained by the B K-edge XAFS analysis. It was confirmed that B K-edge XAFS analysis enables us to discriminate sp$$^{2}$$ type boron (BO$$_{3}$$) from sp$$^{3}$$ type boron (BO$$_{4}$$). Addition of waste elements to a glass frit increases the percentage of BO$$_{3}$$ and decreases that of BO$$_{4}$$. By decreasing the SiO$$_{2}$$/Al$$_{2}$$O$$_{3}$$ ratio or increasing the (SiO$$_{2}$$+B$$_{2}$$O$$_{3}$$)/Al$$_{2}$$O$$_{3}$$ ratio in the glass composition, the BO$$_{3}$$ percentage increases and the BO$$_{4}$$ percentage decreases. Addition of P$$_{2}$$O$$_{5}$$ decreases the BO$$_{3}$$ percentage and increases the BO$$_{4}$$ percentage. Following results were obtained from XAFS measurement of the waste elements. Cerium (Ce) valence is more reduced with the increase of the B$$_{2}$$O$$_{3}$$ content. Addition of P$$_{2}$$O$$_{5}$$ has a tendency to reduce the Ce valence and to enhance deposition of Zr oxide. Deposition of ruthenium compounds separated from glass phase can not be improved by changing the B$$_{2}$$O$$_{3}$$ content. This study was performed as a part of the project, "Improvement of vitrification process of high-level radioactive liquid wastes" on the foundation business of the Agency for Natural Resources and Energy.

JAEA Reports

A Study of the evaluation of the excavation damaged zone in the Horonobe Underground Research Laboratory, 2; Investigation in the 250 m gallery (Joint research)

Aoyagi, Kazuhei; Kubota, Kenji*; Nakata, Eiji*; Suenaga, Hiroshi*; Nohara, Shintaro*

JAEA-Research 2017-004, 91 Pages, 2017/06

JAEA-Research-2017-004.pdf:6.07MB

In this study, we performed seismic tomography, seismic refraction survey, resistivity tomography, and hydraulic tests to investigate the hydro-mechanical property of the excavation damaged zone (EDZ) in the 250 m gallery of the Horonobe Underground Research Laboratory. As a result of seismic tomography, seismic velocity is significantly decreased within 1 m from the gallery wall. The decrease of seismic velocity is related to the density of fracture induced around the gallery wall as a result of the gallery excavation. Thus the extent of the fractures induced by gallery excavation, i.e., EDZ fractures is clarified to be within 1.0 m from the gallery wall. The enhanced hydraulic conductivity was detected within 0.5 to 1.0 m from the gallery wall on the basis of the result of hydraulic tests. This is almost consistent with the extent of the region that seismic velocity is significantly decreased. Therefore, it is estimated that EDZ fractures induced around the gallery leads to the increase of hydraulic conductivity. In addition, the desaturation zone around the gallery is not induced as a result of resistivity tomography. From these results, the hydro-mechanical property of the EDZ is clarified in detail. Also, the in situ tests and evaluation method applied in this study are appropriate to investigate the EDZ in detail.

JAEA Reports

Research of the tasks on risk communication enforcement in fiscal year 2015 (Contract research)

Tanaka, Masaru*; Aoyama, Isao*; Ishizaka, Kaoru*; Ohata, Yuki*; Fukuike, Iori*; Kawase, Keiichi; Watanabe, Masanori; Tokizawa, Takayuki; Miyagawa, Hiroshi*; Ishimori, Yuu

JAEA-Research 2017-003, 65 Pages, 2017/06

JAEA-Research-2017-003.pdf:2.92MB

JAEA Ningyo-toge Environmental Engineering Center and Fukushima Environmental Safety Center have same challenges in risk communication. As reference, similar domestic cases were investigated by our two Centers, and requirements for building long-term relationship were clarified. As follows; (1) Develop new relationship with various stakeholders in the region. (2) Make better use of existing resources (personnel, land and facilities, etc.). (3) Make a concerted effort to create new values with local stakeholders. (4) Make an opportunity which local stakeholders confirm safety and build confidence to the project. These efforts will enhance the opportunities for operators and residents to learn about environment management and environmental protection.

JAEA Reports

Groundwater pressure records by geochemical monitoring system in the Horonobe Underground Research Laboratory

Mezawa, Tetsuya; Mochizuki, Akihito; Miyakawa, Kazuya; Sasamoto, Hiroshi

JAEA-Data/Code 2017-010, 63 Pages, 2017/06

JAEA-Data-Code-2017-010.pdf:9.66MB
JAEA-Data-Code-2017-010-appendix(CD-ROM).zip:5.08MB

Japan Atomic Energy Agency (JAEA) has been conducting "geoscientific study" and "research and development on geological disposal" in the Horonobe Underground Research Laboratory (URL) for safe geological disposal of high-level radioactive waste. Geochemical parameters of groundwater pressure, pH, and oxidation-reduction potential in the deep groundwater has been continuously monitored by the monitoring system which was developed in the Horonobe URL Project. This report presents the data of groundwater pressure which have been obtained by the monitoring system installed at the 140 m and 350 m gallery. The data obtained until March 31, 2016 was summarized along with related information such as the specifications of boreholes and the excavation of the URL.

JAEA Reports

Geological and topographical data concerning normal faults (Kawaminami Fault) in the northern Miyazaki Plain, Southern Kyushu, Japan

Niwa, Masakazu; Kurosawa, Hideki*; Kosaka, Hideki*; Ikuta, Masafumi*; Takatori, Ryoichi*

JAEA-Data/Code 2017-009, 71 Pages, 2017/06

JAEA-Data-Code-2017-009.pdf:13.8MB
JAEA-Data-Code-2017-009-appendix(CD-ROM).zip:50.09MB

Changes of stress state due to the 2011 off the Pacific Coast of Tohoku Earthquake triggered normal displacements of faults that have not been regarded as active faults. In this study, geological survey for normal faults in coastal region was conducted in order to understand the mechanism of reactivation of inactive faults triggered by megathrust earthquakes. This report includes topographical and geological data obtained by field works in and around the Kawaminami Fault in northern margin of the Miyazaki Plain, with results of microscopic examination, analyses of X-ray diffraction and particle size distribution for clayey samples, analyses of tephra and plant opal, and radiocarbon dating.

JAEA Reports

Report on analytical activities in potentially hazardous materials mitigation measures at the Plutonium Conversion Development Facility; 2015.12 $$sim$$ 2016.10

Horigome, Kazushi; Taguchi, Shigeo; Ishibashi, Atsushi; Inada, Satoshi; Kuno, Takehiko; Surugaya, Naoki

JAEA-Technology 2017-008, 14 Pages, 2017/05

JAEA-Technology-2017-008.pdf:1.15MB

The plutonium solution had been converted into MOX powder to mitigate the potential hazards of storage plutonium solution such as hydrogen generation at the Plutonium Conversion Development Facility. The plutonium conversion operations had been started in April, 2014, and had been finished in July, 2016. With respect to the samples taken from the conversion process, about 2,200 items of plutonium/uranium solutions and MOX powders had been analyzed for the operation control in the related analytical laboratories at the Tokai Reprocessing Plant. This paper describes the reports on analytical activities and related maintenance works in the analytical laboratories conducted from December, 2015 to October, 2016.

JAEA Reports

Compilation of the data book on light water reactor benchmark to develop the next version of JENDL; Utilization of criticality data in ICSBEP and IRPhEP open databases

Reactor Integral Test Working Group, JENDL Committee

JAEA-Data/Code 2017-006, 152 Pages, 2017/05

JAEA-Data-Code-2017-006.pdf:13.46MB
JAEA-Data-Code-2017-006(errata).pdf:0.07MB
JAEA-Data-Code-2017-006-appendix1(CD-ROM).zip:115.88MB
JAEA-Data-Code-2017-006-appendix2(CD-ROM).zip:110.88MB

A benchmark database which is devoted to the evaluation of the future JENDL against the criticality of light water reactors was prepared, where the ICSBEP and IRPhEP handbooks by OECD/NEA were utilized effectively. Specific features of this report can be described as follows: (1) The recommendation for benchmarking is based on careful reviewing for the document and related information. Validity of the original benchmark evaluation is carefully checked, and numerical results obtained with JENDL-4.0 are considered. (2) Heterogeneity effect of PuO$$_{2}$$ particles dispersed in fuel medium is consistently quantified for the MOX fuel-loaded experimental data. This precise evaluation is realized by the newly developed finite fuel pin bundle model with the Monte Carlo neutron transport code. (3) Sensitivity analysis is conducted in order to specify nuclear data whose difference between recent nuclear data libraries significantly affects the critical parameter calculation.

JAEA Reports

Potassium-Argon (K-Ar) dating for fault gouge samples in the Tono Geoscience Center

Tamura, Hajimu*; Shibata, Kenji*; Takahashi, Naoya; Niwa, Masakazu

JAEA-Testing 2017-001, 52 Pages, 2017/03

JAEA-Testing-2017-001.pdf:2.36MB

It is essential to understand the activity of faults in and around a target area to assess the long-term geosphere stability for geological isolation. Potassium-Argon (K-Ar) dating of fault gouge has been conducted in Tono Geoscience Center as one of the dating technique for faulting. This report includes methods for sample preparation, analyses, and age calculation on the K-Ar dating. This can contribute to an evaluation of calculated K-Ar ages.

JAEA Reports

Criticality safety evaluation of the fresh fuel storage in NSRR; Under consideration of earthquake and tsunami occurrence

Motome, Yuiko; Murao, Hiroyuki

JAEA-Technology 2017-007, 18 Pages, 2017/03

JAEA-Technology-2017-007.pdf:2.16MB

Nuclear Safety Research Reactor (NSRR) facility have been utilized for fuel irradiation experiments to study the behaviors of nuclear fuels under reactivity initiated accident conditions. Unirradiated test fuels used in fuel irradiation experiments and flesh driver fuel elements for reactor operation are stored in the fuel building of the facility. In response to the 2011 off the Pacific coast of Tohoku Earthquake, the impact of NSRR's nuclear fuel material usage facilities on external events beyond design requirements was evaluated. The subcriticality of the flesh fuel storage was confirmed in consideration of earthquake and tsunami as superimposed event.

JAEA Reports

Examination of decontamination of various materials at houses in difficult-to-return zone

Mori, Airi; Tanabe, Tsutomu; Wada, Takao; Kato, Mitsugu

JAEA-Technology 2017-006, 38 Pages, 2017/03

JAEA-Technology-2017-006.pdf:2.98MB

Large quantities of radioactive materials were released into the environment as a result of the Fukushima Daiichi Nuclear Power Station accident. Residential areas and forest areas near the power station were contaminated with the radioactive materials. Outside of the houses, schools and the other buildings are being decontaminated by national authority and local government. On the other hand, the materials (such as walls, floors, or windows) which constitute the houses are not decontaminated officially. In order to prepare decontamination methods that can be applied easily, we conducted examinations of decontamination for various materials in houses. Fibrous materials, woods, glasses, concretes, plastics, vinyl chloride materials, metals and synthetic leathers were used in our examinations. These materials were collected from houses in difficult-to-return zone, and were contaminated by radioactive materials released by the accident. Dry methods (suction, wiping, adsorption and peelable coating), wet methods (wiping, brushing, polishing and washing) and physical method (peeling of materials) were used for decontamination. As a result of our examinations, materials with low water permeability, such as glasses, concretes, vinyl chloride materials and metals, were able to be decontaminated efficiently (about 90% reduction) by using wet methods. Materials with high water permeability like woods were relatively well decontaminated by peelable coating (about 60%-70% reduction). In addition to the examination described above, the difference of contamination reduction effect between chemical properties of detergents and the effect of rubbing of peelable coating were also examined. Finally, the most effective method was summarized based on these examinations.

JAEA Reports

Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2015); Development of design and construction planning and countermeasure technologies (Contract research)

Toguri, Satohito*; Kobayashi, Shinji*; Tsuji, Masakuni*; Yahagi, Ryoji*; Yamada, Toshiko*; Matsui, Hiroya; Sato, Toshinori; Mikake, Shinichiro; Aoyagi, Yoshiaki

JAEA-Technology 2017-005, 43 Pages, 2017/03

JAEA-Technology-2017-005.pdf:4.4MB

The study on engineering technology in the Mizunami Underground Research Laboratory (MIU) project roughly consists of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security, and (5) development of technologies regarding restoration and mitigating of the excavation effect. In FY2015, as a part of the important issues on the research program, water-tight grouting method has been developed. Grouting methods utilized in the MIU were evaluated and the post-excavation grouting at the -500m Access/Research Gallery-South was planned based on these evaluation results. Also, technology development from the viewpoint of geological disposal was summarized, and information on the alternative method to the grouting method was collected and organized.

JAEA Reports

Confirmation of feasibility of fabrication technology and characterization of high-packing fraction fuel compact for HTGR

Mizuta, Naoki; Ueta, Shohei; Aihara, Jun; Shibata, Taiju

JAEA-Technology 2017-004, 22 Pages, 2017/03

JAEA-Technology-2017-004.pdf:2.71MB

Confirmation of feasibility of fabrication technology and characterization of the high-packing fraction fuel compact of High Temperature Gas Reactor (HTGR) fuel were carried out. Fuel compacts were fabricated with CFP packing fraction targeted at 33 percent by the same manufacturing condition of HTTR fuel compact. SiC-defective fraction, compressive strength and internal CFP distribution of the compact, important parameters to guarantee its integrity, were evaluated. The high-packing fuel compacts showed as same level of SiC-defective fraction as that of HTTR first loading fuel, 8$$times$$10$$^{-5}$$, and larger compressive strength than the HTTR fuel criteria, 4,900N. The feasibility of fabrication technology and the performance for the high-packing fraction fuel compact was confirmed.

JAEA Reports

Technical design report on J-PARC Transmutation Experimental Facility; ADS Target Test Facility (TEF-T)

Nuclear Transmutation Division, J-PARC Center

JAEA-Technology 2017-003, 539 Pages, 2017/03

JAEA-Technology-2017-003.pdf:59.1MB

JAEA is pursuing R&D on volume reduction and mitigation of degree of harmfulness of high-level radioactive waste based on the "Strategic Energy Plan" issued in April 2014. Construction of Transmutation Experimental Facility is under planning as one of the second phase facilities in the J-PARC program to promote R&D on the transmutation technology with using accelerator driven systems (ADS). The TEF consists of two facilities: ADS Target Test Facility (TEF-T) and Transmutation Physics Experimental Facility (TEF-P). Development of spallation target technology and study on target materials are to be conducted in TEF-T with impinging a high intensity proton beam on a lead-bismuth eutectic target. Whereas in TEF-P, by introducing a proton beam to minor actinide loaded subcritical cores, physical properties of the cores are to be studied, and operation experiences are to be acquired. This report summarizes results of technical design for construction of one of two TEF facilities, TEF-T.

JAEA Reports

Rearrangement works of unbalanced waste packages by influence of the Great East Japan Earthquake

Ishihara, Keisuke; Kanazawa, Shingo; Kozawa, Masachiyo; Mori, Masakazu; Kawahara, Takahiro

JAEA-Technology 2017-002, 27 Pages, 2017/03

JAEA-Technology-2017-002.pdf:21.88MB

At radioactive waste management facilities in the Nuclear Science Research Institute, solid radioactive wastes are stored by using containers such as 200L drums and pallets to tier containers in 2 to 4 stacks in the height direction in waste storage facilities (Waste Storage Facility No.1, Waste Storage Facility No.2 and Waste Size Reduction and Storage Facility). On March 11, 2011, the Great East Japan Earthquake was happened, and some waste packages dropped from their pallets and large number of waste packages moved from their original position and inclined due to the influence of the earthquake in the waste storage facilities. There was no experience of rearrangement works to set those dropped and unbalanced waste packages in their original position and it was necessary to prepare detailed work procedures and progress for this task to prevent the occurrence of industrial accidents. Therefore, we prepared detailed work manual and repeatedly carried out mock-up test. And then, we started rearrangement work from April 2011 after confirmation of workers skill and adequacy of the work manual. Finally, all rearrangement works for stored waste packages took about four and half years and were completed in September 2015 without any accident and shutdown of storage function. This report summarizes the countermeasures to reduce exposure doses of workers and to prevent the occurrence of industrial accidents during the rearrangement works.

JAEA Reports

Evaluation of nuclides migration for trench-type disposal by a calculation method taking leaching into consideration

Totsuka, Masayoshi; Kurosawa, Ryohei*; Sakai, Akihiro; Nakata, Hisakazu; Hayashi, Hirokazu; Amazawa, Hiroya

JAEA-Technology 2017-001, 40 Pages, 2017/03

JAEA-Technology-2017-001.pdf:2.24MB

Japan Atomic Energy Agency is planning for the near surface disposal of low level radioactive wastes generated from research, industrial and medical facilities industry in Japan. This document provides the values of radioactivity concentrations equivalent to dose criterion for trench-type disposal. These values are derived based on the safety assessment for ground water scenarios by using a model which describes the release of radionuclides from wastes to a cover soil caused by elution. These concentrations are compared with the one calculated by a model that describes the nuclide release mechanisms as solid-liquid partitioning equilibrium. Additionally, the change in the concentrations is evaluated when the amount of water percolating into a disposal facility varies.

JAEA Reports

Fabrication techniques of the sample supporting jigs for Post Irradiation Examination with 3 dimension printer

Miyai, Hiromitsu; Suzuki, Miho; Kanazawa, Hiroyuki

JAEA-Technology 2016-041, 46 Pages, 2017/03

JAEA-Technology-2016-041.pdf:5.54MB

In the Reactor Fuel Examination Facility (RFEF) of Japan Atomic Energy Agency (JAEA), Post Irradiation Examinations (PIEs) have been carried out for a long time in order to verify the reliability and the safety of the nuclear fuels irradiated in nuclear power plants. Samples for the PIEs are small and have various shapes. In order to facilitate the handling of the samples using a manipulator, the several kinds of jigs have been used for PIEs at RFEF those jigs are usually manufactured by machining process. We tried to make the jigs, which is PLA resin, with 3D printer and instead of machining process for the reduction of the manufacturing time and the improvement of the dimensional accuracy of the jig this time. It became clear that the actual dimensions of the jigs manufactured with 3D printer were roughly smaller at the concave section and larger at the convex section compared with the dimensions of the plan. So it is necessary to make a plan for the jigs after consideration of the characteristic of the 3D printer. The jigs can be applied to SEM observation, because the deposition of carbon film onto the jigs was well. And the jigs can be used to for the metallography, because the jigs were applicable without any harmful effects on polishing and etching processes.

JAEA Reports

Neutronic characteristic of HTTR fuel compact with various packing models of coated fuel particle

Ho, H. Q.; Honda, Yuki; Goto, Minoru; Takada, Shoji

JAEA-Technology 2016-040, 16 Pages, 2017/03

JAEA-Technology-2016-040.pdf:2.89MB

To study the packing effects of the truncated coated fuel particle on the criticality for the High Temperature engineering Test Reactor (HTTR), four alternative models including the truncated uniform model, the non-truncated uniform model, the truncated random model and the non-truncated random model for the arrangement of CFP in fuel compact were used, and the neutronic and criticality calculation were performed by using Monte Carlo MCNP6 code with ENDF/B-VII.1 cross section library. The results showed that the infinite multiplication factors (k$$_{rm inf}$$) in the truncated models were lower than those of the non-truncated models regardless of the uniform or random arrangement, and the four factors in the four-factor-formula showed that the difference of k$$_{rm inf}$$ was mainly attributed to the resonance escape probability. The difference in resonance escape probability is caused by the increase of capture reactions in the resonance region as the influence of spatial-self-shielding-effect. It is because the equivalent kernel diameter of the CFP for the truncated model is smaller than that of the non-truncated model.

JAEA Reports

Preliminary missions for the decommissioning of the laboratory building No.1 for the plutonium research program

Segawa, Yukari; Horita, Takuma; Kitatsuji, Yoshihiro; Kumagai, Yuta; Aoyagi, Noboru; Nakada, Masami; Otobe, Haruyoshi; Tamura, Yukito*; Okamoto, Hisato; Otomo, Takashi; et al.

JAEA-Technology 2016-039, 64 Pages, 2017/03

JAEA-Technology-2016-039.pdf:5.24MB

The laboratory building No.1 for the plutonium research program (Bldg. Pu1) was chosen as one of the facilities to decommission by Japan Atomic Energy Agency Reform in September, 2013. The research groups, users of Bldg. Pu1, were driven by necessity to remove used equipment and transport nuclear fuel to other facilities from Bldg. Pu1. Research Group for Radiochemistry proactively established the Used Equipment Removal Team for the smooth operation of the removal in April, 2015. The team classified six types of work into the nature of the operation, removal of used equipment, disposal of chemicals, stabilization of mercury, stabilization of nuclear fuel, transportation of nuclear fuel and radioisotope, and survey of contamination status inside the glove boxes. These works were completed in December, 2015. This report circumstantially shows six works process, with the exception of the approval of the changes on the usage of nuclear fuel in Bldg. Pu1 to help prospective decommission.

JAEA Reports

Development of novel technique of negative C$$_{60}$$ ion production by electron attachment using cesium sputter ion source

Usui, Aya; Chiba, Atsuya; Yamada, Keisuke

JAEA-Technology 2016-034, 21 Pages, 2017/03

JAEA-Technology-2016-034.pdf:82.52MB

In the TIARA (Takasaki Ion Accelerators for Advanced Radiation Application), in order to propel the studies on the swift cluster ions, a novel technique was developed to increase the beam intensity of the fullerene ions which would have a considerably larger irradiation effect than any cluster ions. As a new method of negative ion production, the ionization mechanism by electron attachment was introduced as an alternative to the traditional method with the cesium sputtering to the existing cesium sputter type ion source (SNICS). In consequence, the intensity of the negative C$$_{60}$$ ion beam produced using an existing ion source with a novel technique was increased thousand times as high as those using the previous one for 12 hour operation. In this report, we describe the problems in the traditional ionization method and explain the production technique of the negative C$$_{60}$$ ions ionized via electron attachment process, which solves that only by the minor changes in SNICS.

JAEA Reports

On-site training using JMTR and related facilities in FY2016

Eguchi, Shohei; Takemoto, Noriyuki; Shibata, Hiroshi; Tanimoto, Masataka; Kusunoki, Tsuyoshi

JAEA-Review 2017-007, 32 Pages, 2017/03

JAEA-Review-2017-007.pdf:3.19MB

A practical training course using the JMTR and other research infrastructures was held from July 25th to August 5th in 2016 for domestic and foreign young researchers and engineers. This course aims to enlarge the number of high-level nuclear researchers/engineers in Japan and foreign countries which are planning to introduce a nuclear power plant, and to promote the use of facilities in future. In this year, 13 young researchers and engineers joined the course from 7 countries. This course consists of lectures, which are related to irradiation test research, safety management of nuclear reactors, nuclear characteristics of the nuclear reactors, etc., practical training and technical tour of nuclear facilities on nuclear energy. At the end of the course, the trainees discussed the energy policy and prospect of each country, each country's research reactor, and trainee's current research. The content of this course in FY 2016 is reported in this paper.

JAEA Reports

Survey results for the transition of the air dose rate after the Cabinet Office decontamination model demonstration project; 1st-11th survey results summary (Contract research)

Kawase, Keiichi; Kitano, Mitsuaki; Watanabe, Masanori; Yoshimura, Shuichi; Kikuchi, Shiro; Nishino, Katsumi*

JAEA-Review 2017-006, 173 Pages, 2017/03

JAEA-Review-2017-006.pdf:35.6MB
JAEA-Review-2017-006-appendix(CD-ROM).zip:0.52MB

Survey of a transition of the air and surface dose rate was conducted for the area where the Cabinet Office decontamination model demonstration project was implemented. The area includes 15 districts in 9 municipalities identified by the Ministry of the Environment. We investigated 11 times from October, 2012 to October, 2015. Measurement of the air dose rate in this study was carried out in two methods using the fixed-point measurement and gamma plotter H using a NaI scintillation survey meter etc. As fixed-point measurement, set measurement point in the first survey for (fixed point), it was subjected to measurement of the surface dose rate to continue (1cm height) and space dose rate (1m height). In addition surface specific dose rate distribution measurement using a gamma plotter H (5cm and 1m height) was also performed together. As a result of the fixed-point measurement and gamma plotter H surface measurements, space dose rate from the first survey to the 11th survey shows the downward trend. We consider that there is no movement of radioactive pollutants from outside decontamination model project area into decontamination model project area.

JAEA Reports

Activities of Working Group on Verification of PASCAL; Fiscal year 2015

Li, Y.; Hayashi, Shotaro*; Itabashi, Yu*; Nagai, Masaki*; Kanto, Yasuhiro*; Suzuki, Masahide*; Masaki, Koichi*

JAEA-Review 2017-005, 80 Pages, 2017/03

JAEA-Review-2017-005.pdf:16.85MB

For the improvement of the structural integrity assessment methodology on reactor pressure vessels (RPVs), the probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed and improved in JAEA based on latest knowledge. The PASCAL code evaluates the failure probabilities and frequencies of Japanese RPVs under transient events such as pressurized thermal shock considering neutron irradiation embrittlement. In order to confirm the reliability of the PASCAL as a domestic standard code and to promote the application of PFM on the domestic structural integrity assessments of RPVs, it is important to verify the probabilistic variables, functions and models incorporated in the PASCAL and summarize the verification processes and results as a document. On the basis of these backgrounds, we established a working group, composed of experts on this field besides the developers, on the verification of the PASCAL3 which is a PFM analysis module of PASCAL, and the source program of PASCAL3 was released to the members of working group. Through one year activities, the applicability of PASCAL in structural integrity assessments of domestic RPVs was confirmed with great confidence. This report summarizes the activities of the working group on the verification of PASCAL in FY2015.

JAEA Reports

Proceedings of the Research Conference on Post-accident Waste Management Safety (RCWM2016) and the Technical Seminar on Safety Research for Radioactive Waste Storage; November 7th and 8th 2016, LATOV, Iwaki, Fukushima, Japan

Motooka, Takafumi; Yamagishi, Isao

JAEA-Review 2017-004, 157 Pages, 2017/03

JAEA-Review-2017-004.pdf:48.18MB

Collaborative Laboratories for Advanced Decommissioning Science (CLADS) is responsible to promote international cooperation in the R&D activities on the decommissioning of Fukushima Daiichi Nuclear Power Station and to develop the necessary human resources. CLADS held the Research Conference on Post-accident Waste Management Safety (RCWM2016) was held on November 7th, 2016 and the Technical Seminar on Safety Research for Radioactive Waste Storage was held on November 8th, 2016. This report compiles the abstracts and the presentation materials in the above conference and seminar.

JAEA Reports

Collaboration between SCK$$cdot$$CEN and JAEA for Partitioning and Transmutation through Accelerator-Driven System

Working Group for Collaboration between SCK$$cdot$$CEN and JAEA for P&T through ADS

JAEA-Review 2017-003, 44 Pages, 2017/03

JAEA-Review-2017-003.pdf:5.35MB

This technical report reviews Research and Development (R&D) programs for the Partitioning and Transmutation (P&T) technology through Accelerator-Driven System (ADS) at Studiecentrum voor Kernenergie/Centre d'Etude de l'$'e$nergie Nucl$'e$aire (SCK$$cdot$$CEN) and Japan Atomic Energy Agency (JAEA). The results obtained in the present Collaboration Arrangement between the two organizations for the ADS are also summarized, and possible further collaborations and mutual realizations in the future are sketched.

JAEA Reports

Japan - IAEA Joint Nuclear Energy Management School 2016

Yamaguchi, Mika; Hidaka, Akihide; Ikuta, Yuko; Murakami, Kenta*; Tomita, Akira*; Hirose, Hiroya*; Watanebe, Masanori*; Ueda, Kinichi*; Namaizawa, Ken*; Onose, Takatoshi*; et al.

JAEA-Review 2017-002, 60 Pages, 2017/03

JAEA-Review-2017-002.pdf:9.41MB

Since 2010, IAEA has held the NEM School to develop future leaders who plan and manage nuclear energy utilization in their county. Since 2012, JAEA together with Japan Nuclear HRD Network, University of Tokyo, Japan Atomic Industrial Forum and JAIF International Cooperation Center have cohosted the school in Japan in cooperation with IAEA. Since then, the school has been held in Japan every year. In 2006, Japanese nuclear technology and experience, such as lessons learned from the Fukushima Daiichi Nuclear Power Plant accident, were provided to offer a unique opportunity for the participants to learn about particular cases in Japan. Through the school, we contributed to the internationalization of Japanese young nuclear professionals, development of nuclear human resource of other countries including nuclear newcomers, and enhanced cooperative relationship with IAEA. Additionally, collaborative relationship within the network was strengthened by organizing the school in Japan.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2015

Nakano, Masanao; Fujita, Hiroki; Kono, Takahiko; Nagaoka, Mika; Inoue, Kazumi; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.

JAEA-Review 2017-001, 115 Pages, 2017/03

JAEA-Review-2017-001.pdf:3.57MB

Based on the regulations (the safety regulation of Tokai reprocessing plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2015. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Handbook of advanced nuclear hydrogen safety (1st Edition)

Hino, Ryutaro; Takegami, Hiroaki; Yamazaki, Yukie; Ogawa, Toru

JAEA-Review 2016-038, 294 Pages, 2017/03

JAEA-Review-2016-038.pdf:11.08MB

In the aftermath of the Fukushima nuclear accident, safety measures against hydrogen in severe accident have been recognized as a serious technical problem in Japan. Therefore, efforts have begun to form a common knowledge base between nuclear engineers and experts on combustion and explosion, and to secure and improve future nuclear energy safety. As one of such activities, we have prepared the "Handbook of Advanced Nuclear Hydrogen Safety" under the Advanced Nuclear Hydrogen Safety Research Program funded by the Agency for Natural Resources and Energy of the Ministry of Economy, Trade and Industry. The concepts of the handbook are as follows: to show advanced nuclear hydrogen safety technologies that nuclear engineers should understand, to show hydrogen safety points to make combustion-explosion experts cooperate with nuclear engineers, to expand information on water radiolysis considering the situation from just after the Fukushima accidents and to the waste management necessary for decommissioning after the accident, etc.

JAEA Reports

Environmental performance data in "Japan Atomic Energy Agency Report 2016"

Safety and Environmental Management Section, Safety and Nuclear Security Administration Department

JAEA-Review 2016-037, 218 Pages, 2017/03

JAEA-Review-2016-037.pdf:6.26MB

In September 2016, Japan Atomic Energy Agency published a part of environmental activity in "Japan Atomic Energy Agency Report 2016" concerning the activities of FY 2015 under "Law Concerning the Promotion of Business Activities with Environmental Consideration by Specified Corporations, etc., by Facilitating Access to Environmental Information, and Other Measures". This report has been edited to show detailed environmental performance data in FY 2015 as the base of the "Japan Atomic Energy Agency Report 2016". This report would not only ensure traceability of the data in order to enhance the reliability of the environmental report, but also make useful measures for promoting activities of environmental considerations in JAEA.

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2015)

Department of HTTR

JAEA-Review 2016-036, 95 Pages, 2017/03

JAEA-Review-2016-036.pdf:4.28MB

The High Temperature Engineering Test Reactor (HTTR) was attained at the full power operation of 30 MW in December 2001 and achieved the 950 degrees of coolant outlet temperature at outside of the reactor pressure vessel in June 2004. This report summarizes activities and results of HTTR operation, maintenance, and several Research and developments, which were carried out in the fiscal year 2015.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2015

Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Hosomi, Kenji; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; Nishimura, Tomohiro; Matsubara, Natsumi; Maehara, Yushi; et al.

JAEA-Review 2016-035, 179 Pages, 2017/03

JAEA-Review-2016-035.pdf:4.2MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2015 to March 2016. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Enforcement management system for decommissioning project in Ningyo-toge Environmental Engineering Center; Results of activities in fiscal year 2015

Ema, Akira; Ishimori, Yuu

JAEA-Review 2016-034, 84 Pages, 2017/03

JAEA-Review-2016-034.pdf:8.96MB

The Ningyo-toge Environmental Engineering Center of the Japan Atomic Energy Agency has managed the decommissioning projects since 2013. In 2015, Enforcement Management System (EMS) was established to enforce the project management systematically. The project management based on EMS was started in 2015. This report summarized the state of management activities in FY 2015.

JAEA Reports

Annual report for FY2015 on the activities of radiation safety in Nuclear Science Research Institute etc. (April 1, 2015 - March 31, 2016)

Department of Radiation Protection, Nuclear Science Research Institute; Safety Section, Department of Administrative Services, Takasaki Advanced Radiation Research Institut; Safety and Utilities Section, Department of Administrative Services, Kansai Photon Science Institute; Operation Safety Administration Section, Mutsu Office, Aomori Research and Development Center; Safety Section, Department of Administrative Services, Naka Fusion Institute

JAEA-Review 2016-033, 180 Pages, 2017/03

JAEA-Review-2016-033.pdf:12.25MB

This annual repost describes the activities in the 2015 fiscal year of Department of Radiation Protection in Nuclear Science Research Institute, Safety Section in Takasaki Advanced Radiation Research Institute, Safety and Utilities Section in Kansai Photon Science Institute, Nuclear Facilities Management Section in Aomori Research and Development Center and Safety Section in Naka Fusion Institute.

JAEA Reports

Annual report of Engineering Services Department on JFY2015

Engineering Services Department

JAEA-Review 2016-030, 107 Pages, 2017/03

JAEA-Review-2016-030.pdf:13.64MB

The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (a receive transmitted electricity system, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel treatment facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipments. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2015. We hope that this report may help future work.

JAEA Reports

Measurement of rock mass deformation around the closure test drift during groundwater recovery experiment at 500m depth of Mizunami Underground Research Laboratory

Kuwabara, Kazumichi*; Aoyagi, Yoshiaki; Ozaki, Yusuke; Matsui, Hiroya

JAEA-Research 2017-002, 39 Pages, 2017/03

JAEA-Research-2017-002.pdf:3.58MB

Authors developed a displacement meter using optical fiber sensor. The displacement meter can be set at any locations in a borehole and guarantee the measurement accuracy up to 5MPa. Total twelve displacement meters were installed in three boreholes to measure the rock mass displacement during groundwater recovery test. The measurement of the rock mass displacement was stated on March, 27, FY 2014. During the first and second groundwater recovery experiments, compressive displacements were observed close to the closure test drift wall. Magnitude of the measured displacements, except vicinity of test drift wall, was smaller than that of calculated under the assumption of it is an isotropic elastic material.

JAEA Reports

Verification of alternative dew point hygrometer for CV-LRT in MONJU; Short- and long-term verification for capacitance-type dew point hygrometer (Translated document)

Ichikawa, Shoichi; Chiba, Yusuke; Ono, Fumiyasu; Hatori, Masakazu; Kobayashi, Takanori; Uekura, Ryoichi; Hashiri, Nobuo*; Inuzuka, Taisuke*; Kitano, Hiroshi*; Abe, Hisashi*

JAEA-Research 2017-001, 40 Pages, 2017/03

JAEA-Research-2017-001.pdf:5.19MB

In order to reduce the influence on a plant schedule of the MONJU by the maintenance of dew point hygrometers, The JAEA examined a capacitance type dew point hygrometer as an alternative dew point hygrometer for a lithium-chloride type dew point hygrometer which had been used at the CV-LRT in the MONJU. As a result of comparing a capacitance type dew point hygrometer with a lithium-chloride type dew point hygrometer at the CV-LRT (Atmosphere: nitrogen, Testing time: 24 hours), there weren't significant difference between a capacitance type dew point hygrometer and a lithium-chloride type dew point hygrometer. As a result of comparing a capacitance dew point hygrometer with a high-mirror-surface type dew point hygrometer for long term verification (Atmosphere: air, Testing time: 24 months), the JAEA confirmed that a capacitance type dew point hygrometer satisfied the instrument specification ($$pm$$2.04$$^{circ}$$C) required by the JEAC4203-2008.

JAEA Reports

An Analytical method of low-level radium isotopes in freshwater sample by $$gamma$$-ray spectrometry; Application of ${it in situ}$ pre-concentration from large volume of water sample using Powdex resin and barium sulfate coprecipitation of radium isotopes

Tomita, Jumpei; Abe, Takuya

JAEA-Research 2016-026, 12 Pages, 2017/03

JAEA-Research-2016-026.pdf:1.15MB

An analytical method of low-level Ra isotopes in freshwater samples with combination of ${it in situ}$ pre-concentration from large volume of water sample ($$sim$$170 L) using Powdex resin and $$gamma$$-ray spectrometry followed by simple coprecipitation of Ra was developed. ${it In situ}$ pre-concentration of Ra by batch method using Powder resin was examined, and it was shown that the amount of the resin required collecting Ra in the water sample could be determined by measuring the electric conductivity (EC) of water sample. It was found that coprecipitation of Ra with barium sulfate could remove more than 96% of potassium that increases the background. The validation of this method was confirmed by the analyses of 170 L of water sample containing the known amount of Ra isotopes with different EC. Among the analyses, the recovery of Ra was 98% in average and detection limits of $$^{226}$$Ra and $$^{228}$$Ra were achieved to be approximately 0.3 and 0.5 mBq L$$^{-1}$$, respectively.

JAEA Reports

Horonobe Underground Research Laboratory Project; Synthesis of Phase II (Construction Phase) investigations to a depth of 350m

Sato, Toshinori; Sasamoto, Hiroshi; Ishii, Eiichi; Matsuoka, Toshiyuki; Hayano, Akira; Miyakawa, Kazuya; Fujita, Tomoo*; Tanai, Kenji; Nakayama, Masashi; Takeda, Masaki; et al.

JAEA-Research 2016-025, 313 Pages, 2017/03

JAEA-Research-2016-025.pdf:45.1MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. This report summarizes the results of the Phase II investigations carried out from April 2005 to June 2014 to a depth of 350m. Integration of work from different disciplines into a "geosynthesis" ensures that the Phase II goals have been successfully achieved and identifies key issues that need to made to be addressed in the Phase II investigations Efforts are made to summarize as many lessons learnt from the Phase II investigations and other technical achievements as possible to form a "knowledge base" that will reinforce the technical basis for both implementation and the formulation of safety regulations.

JAEA Reports

Hydrochemical investigation at the Mizunami Underground Research Laboratory; Compilation of groundwater chemistry data in the Mizunami group and the Toki granite (fiscal year 2015)

Hayashida, Kazuki; Kato, Toshihiro; Munemoto, Takashi; Aosai, Daisuke*; Inui, Michiharu*; Kubota, Mitsuru; Iwatsuki, Teruki

JAEA-Data/Code 2017-008, 52 Pages, 2017/03

JAEA-Data-Code-2017-008.pdf:3.84MB

Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the effect on excavating and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry obtained at the MIU in the fiscal year 2015. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method, analytical method) and methodology for quality control are described.

JAEA Reports

Integral benchmark test of JENDL-4.0 for U-233 systems with ICSBEP Handbook

Kuwagaki, Kazuki*; Nagaya, Yasunobu

JAEA-Data/Code 2017-007, 27 Pages, 2017/03

JAEA-Data-Code-2017-007.pdf:4.77MB
JAEA-Data-Code-2017-007-appendix(CD-ROM).zip:0.37MB

The integral benchmark test of JENDL-4.0 for U-233 systems using the continuous-energy Monte Carlo code MVP was conducted. The previous benchmark test was performed only for U-233 thermal solution and fast metallic systems in the ICSBEP handbook. In this study, MVP input files were prepared for uninvestigated benchmark problems in the handbook including compound thermal systems (mainly lattice systems) and integral benchmark test was performed. The prediction accuracy of JENDL-4.0 was evaluated for effective multiplication factors ($$k_mathrm{eff}$$'s) of the U-233 systems. As a result, a trend of underestimation was observed for all the categories of U-233 systems. In the benchmark test of ENDF/B-VII.1 for U-233 systems with the ICSBEP handbook, it is reported that a decreasing trend of calculated $$k_mathrm{eff}$$ values in association with a parameter ATFF (Above-Thermal Fission Fraction) is observed. The ATFF values were also calculated in this benchmark test of JENDL-4.0 and the same trend as ENDF/B-VII.1 was observed.

JAEA Reports

Data of geophysical logging based on the deep borehole investigations in the Horonobe Underground Research Laboratory Project (Phase I)

Miyara, Nobukatsu; Matsuoka, Toshiyuki

JAEA-Data/Code 2017-005, 34 Pages, 2017/03

JAEA-Data-Code-2017-005.pdf:5.12MB
JAEA-Data-Code-2017-005-appendix(CD-ROM).zip:27.66MB

Japan Atomic Energy Agency (JAEA) is performing the Horonobe Underground Research Laboratory Project, which includes a scientific study of the deep geological environment as a basis of research and development for geological disposal of high level radioactive wastes (HLW), in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in the sedimentary rock. This report integrates geophysical logging data obtained from the deep borehole investigations (HDB-1 $$sim$$ HDB-11) conducted in the Horonobe Underground Research Laboratory Project (Phase I).

JAEA Reports

Case studies of radiation dose assessment in emergency situation of nuclear facilities

Kawasaki, Masatsugu; Nakajima, Junya; Yoshida, Keisuke; Kato, Saori; Nishino, Sho; Nozaki, Teo; Nakagawa, Masahiro; Tsunoda, Junichi; Sugaya, Yuki; Hasegawa, Rie; et al.

JAEA-Data/Code 2017-004, 57 Pages, 2017/03

JAEA-Data-Code-2017-004.pdf:2.34MB

In emergency situation of nuclear facilities, we need to estimate the radiation dose due to radiation and radioactivity to grasp the influence range of the accident in the early stage. Therefore, we prepare the case studies of dose assessment for public exposure dose and personal exposure dose and contribute them to emergency procedures. This document covers about accidents of nuclear facilities in Nuclear Science Research Institute and past accident of nuclear power plant, and it can be used for inheritance of techniques of emergency dose assessment.

JAEA Reports

Monitoring of groundwater inflow into research galleries in the Mizunami Underground Research Laboratory Project (MIU Project); From fiscal year 2014 to 2015

Ueno, Tetsuro; Takeuchi, Ryuji

JAEA-Data/Code 2017-003, 46 Pages, 2017/03

JAEA-Data-Code-2017-003.pdf:5.89MB
JAEA-Data-Code-2017-003-appendix(CD-ROM).zip:2.66MB

Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction Phase (Phase II), and Operation phase (Phase III). As for The MIU Project (Phase II) was carried out from 2004 fiscal year, and has been started the Phase III in 2010 fiscal year. The groundwater inflow monitoring into shafts and research galleries, has been maintained to achieve the Phase II goals, begins in 2004 fiscal year and follow now. This document presents the results of the groundwater inflow monitoring from fiscal year 2014 to 2015.

JAEA Reports

Development of fuel temperature calculation code "FTCC" for high temperature gas-cooled reactors

Inaba, Yoshitomo; Isaka, Kazuyoshi; Shibata, Taiju

JAEA-Data/Code 2017-002, 74 Pages, 2017/03

JAEA-Data-Code-2017-002.pdf:2.36MB

In order to ensure the thermal integrity of fuel in High Temperature Gas-cooled Reactors (HTGRs), it is necessary that the maximum fuel temperature in normal operation is to be lower than a thermal design target. In the core thermal-hydraulic design of block-type HTGRs, the maximum fuel temperature should be evaluated considering data such as core geometry and specifications, power density and neutron fluence distributions, and core coolant flow distribution. The fuel temperature calculation code used in the design stage of the High Temperature engineering Test Reactor (HTTR) presupposes to run on UNIX systems, and its operation and execution procedure are complicated and are not user-friendly. Therefore, a new fuel temperature calculation code, named FTCC, which has a user-friendly system such as a simple and easy operation and execution procedure, was developed. This report describes the calculation objects and models, the basic equations, the strong points (improvement points from the HTTR design code), the code structure, the using method of FTCC, and the result of a validation calculation with FTCC. The calculation result obtained by FTCC provides good agreement with that of the HTTR design code, and then FTCC will be used as one of the design codes for high temperature gas-cooled reactors. In addition, the effect of hot spot factors and fuel cooling forms on reducing the maximum fuel temperature is investigated with FTCC. As a result, it was found that the effect of center hole cooling for hollow fuel compacts and gapless cooling with monolithic type fuel rods on reducing the temperature is very high.

JAEA Reports

Analytical data on contaminated water, rubble and other collected at the Fukushima Daiichi Nuclear Power Station

Asami, Makoto*; Takahatake, Yoko; Myodo, Masato; Tobita, Takeshi; Kobayashi, Kiwami; Hayakawa, Misa; Usui, Yuka; Watahiki, Hiromi; Shibata, Atsuhiro; Nomura, Kazunori; et al.

JAEA-Data/Code 2017-001, 78 Pages, 2017/03

JAEA-Data-Code-2017-001.pdf:4.92MB
JAEA-Data-Code-2017-001-appendix(DVD-ROM).zip:818.06MB

At Fukushima Daiichi Nuclear Power Station owned by Tokyo Electric Power Company Holdings, Incorporated (TEPCO), contaminated water (accumulated, treated) secondary waste from water treatment, rubble and soil were collected and analyzed. The data already opened to public was collected as this report. The analytical data reported by TEPCO, Japan Atomic Energy Agency and International Research Institute for Nuclear Decommissioning until the end of March, 2016, was collected. Information on the samples and values of radioactive nuclide concentration and others were tabulated, besides figures, which show change in radioactive nuclide concentration for major nuclides, are contained. And, English translation and the collected data are provided as electric data.

JAEA Reports

In situ stress measurement at the 350 m Loop Gallery East at the Horonobe Underground Research Laboratory

Aoyagi, Kazuhei; Sakurai, Akitaka; Niunoya, Sumio*

JAEA-Data/Code 2016-022, 91 Pages, 2017/03

JAEA-Data-Code-2016-022.pdf:7.3MB
JAEA-Data-Code-2016-022-appendix(CD-ROM).zip:232.99MB

The objective of this report is to investigate the three dimensional stress state in the 350 m Loop Gallery (East) at the Horonobe Underground Research Laboratory. For the measurement, three boreholes, which are 17.0 m in length, were drilled. Hydraulic fracturing was applied as a stress measurement method. For the analysis, shut-in pressure of a transverse fractures, reopening pressure of longitudinal fractures and stress condition causing borehole breakouts were integrated into the equation; then stress state was calculated by inversion technique. As a result, considering the stress condition causing breakouts, the value of the maximum principal stress was 3.73 MPa, which is much smaller than the overburden pressure (about 6.0 MPa). The orientation of the maximum horizontal stress is almost vertical. The stress state is normal faulting.

JAEA Reports

Gas composition related to the Horonobe Underground Research Laboratory Project

Miyakawa, Kazuya; Tamamura, Shuji*; Nakata, Kotaro*; Hasegawa, Takuma*

JAEA-Data/Code 2016-021, 60 Pages, 2017/03

JAEA-Data-Code-2016-021.pdf:3.87MB
JAEA-Data-Code-2016-021-appendix(CD-ROM).zip:0.45MB

The Japan Atomic Energy Agency has been involved in ongoing research in the Horonobe area for the purposes of geoscientific research, and research and development (R&D) on technologies to be used for the geological disposal of high-level radioactive waste. The chemistry of groundwater and dissolved gas from deep boreholes has been obtained since H13 fiscal year for R&D on technologies related to geological characterization. Horonobe Research Institute for the Subsurface Environment (H-RISE) has investigated a resources development on promoting effective use of coal bed buried in Hokkaido including the Horonobe area using microbial communities. The data of dissolved gas from the Horonobe groundwater have also been obtained along with the microbiological research by H-RISE. Central Research Institute of Electric Power Industry (CRIEPI) has conducted R&D on technology of groundwater geochronology which is one of technologies to be used for the geological disposal, and noble gas data from the Horonobe groundwater have been obtained by CRIEPI. This report shows a data set which comprises gas data obtained from the Horonobe underground research project during the period from H13 fiscal year to H27 fiscal year.

JAEA Reports

Scenario development on application of engineering technology for geological disposal; Study of influence of earthquake at site construction, operation and closure stages and that impact on safety functions after closure of disposal facility (Contract research)

Takai, Shizuka; Takayama, Hideki*; Takeda, Seiji

JAEA-Data/Code 2016-020, 40 Pages, 2017/03

JAEA-Data-Code-2016-020.pdf:2.42MB

In this report, another group of scenarios for occurrence of earthquake at construction stage, operation stage and closure stage of disposal facility was presented. At first, we compiled information about damage cases of tunnel by earthquake and analyzed conditions for occurrence of damage. Base on this result and the previous report, information of influence of the accidents and human factors on safety functions and information of FEP about THMC variation, we specified events to be considered, which occur by earthquake and influence engineering barriers, natural barriers and long-term safety after closure stage of disposal facility. We compiled influence of the events on safety functions after closure stage of disposal and showed the chains of the influence on long-term safety as scenarios. These results were integrated as a database that could support development of scenarios caused by application of engineering technologies to geological disposal.

JAEA Reports

MVP/GMVP version 3; General purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods (Translated document)

Nagaya, Yasunobu; Okumura, Keisuke; Sakurai, Takeshi; Mori, Takamasa

JAEA-Data/Code 2016-019, 450 Pages, 2017/03

JAEA-Data-Code-2016-019.pdf:4.43MB
JAEA-Data-Code-2016-019-hyperlink.zip:2.36MB

In order to realize fast and accurate Monte Carlo simulation of neutron and photon transport problems, two Monte Carlo codes MVP (continuous-energy method) and GMVP (multigroup method) have been developed at Japan Atomic Energy Agency. The codes have adopted a vectorized algorithm and have been developed for vector-type supercomputers. They also support parallel processing with a standard parallelization library MPI and thus a speed-up of Monte Carlo calculations can be achieved on general computing platforms. The first and second versions of the codes were released in 1994 and 2005, respectively. They have been extensively improved and new capabilities have been implemented. The major improvements and new capabilities are as follows: (1) perturbation calculation for effective multiplication factor, (2) exact resonant elastic scattering model, (3) calculation of reactor kinetics parameters, (4) photo-nuclear model, (5) simulation of delayed neutrons, (6) generation of group constants, etc. This report describes the physical model, geometry description method used in the codes, new capabilities and input instructions.

JAEA Reports

MVP/GMVP version 3; General purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods

Nagaya, Yasunobu; Okumura, Keisuke; Sakurai, Takeshi; Mori, Takamasa

JAEA-Data/Code 2016-018, 421 Pages, 2017/03

JAEA-Data-Code-2016-018.pdf:3.89MB
JAEA-Data-Code-2016-018-appendix(CD-ROM).zip:4.02MB
JAEA-Data-Code-2016-018-hyperlink.zip:1.94MB

In order to realize fast and accurate Monte Carlo simulation of neutron and photon transport problems, two Monte Carlo codes MVP (continuous-energy method) and GMVP (multigroup method) have been developed at Japan Atomic Energy Agency. The codes have adopted a vectorized algorithm and have been developed for vector-type supercomputers. They also support parallel processing with a standard parallelization library MPI and thus a speed-up of Monte Carlo calculations can be achieved on general computing platforms. The first and second versions of the codes were released in 1994 and 2005, respectively. They have been extensively improved and new capabilities have been implemented. The major improvements and new capabilities are as follows: (1) perturbation calculation for effective multiplication factor, (2) exact resonant elastic scattering model, (3) calculation of reactor kinetics parameters, (4) photo-nuclear model, (5) simulation of delayed neutrons, (6) generation of group constants, etc. This report describes the physical model, geometry description method used in the codes, new capabilities and input instructions.

JAEA Reports

Compilation of information on uplift of the last hundred thousand years in the Japanese Islands

Nomura, Katsuhiro; Tanikawa, Shinichi*; Amamiya, Hiroki; Yasue, Kenichi

JAEA-Data/Code 2016-015, 49 Pages, 2017/03

JAEA-Data-Code-2016-015.pdf:2.88MB

The uplift of the last hundred thousand years in the Japanese Islands has been acquired mainly using marine and river terraces. We arranged information regarding the uplift in a table. This data is one of the useful information for the development of the investigation technology of uplift and for the research of the landform evolution in Japanese islands.

JAEA Reports

Quantitative X-ray Fluorescence analysis of major and trace elements in rock samples at Tono Geoscience Center

Shimizu, Mayuko; Sano, Naomi; Shibata, Kenji*

JAEA-Testing 2016-004, 40 Pages, 2017/02

JAEA-Testing-2016-004.pdf:2.69MB

X-ray fluorescence analysis is one of the methods commonly used to reveal whole-rock chemical composition, which is basic information of rock samples. This report shows methods to prepare glass beads of fused samples and to use the X-ray fluorescence spectrometer (Rigaku ZSX Primus II) housed in Tono Geoscience Center, and the evaluation of precision and accuracy of the measurement.

JAEA Reports

Development of transportation container for neutron startup source of High Temperature Engineering Test Reactor (HTTR)

Shimazaki, Yosuke; Sawahata, Hiroaki; Yanagida, Yoshinori; Shinohara, Masanori; Kawamoto, Taiki; Takada, Shoji

JAEA-Technology 2016-038, 36 Pages, 2017/02

JAEA-Technology-2016-038.pdf:8.75MB

The High Temperature Engineering Test Reactor (HTTR) has three neutron startup sources (NSs) in the reactor core, each of which consists of $$^{252}$$Cf with 3.7GBq The NSs are exchanged at the interval of approximately 7 years. The NS holders including NSs are transported from the dealer's hot cell to the reactor facility of HTTR using a transportation container. The loading work of NS holders to the Control Rod guide blocks is subsequently carried out in the fuel handling machine maintenance pit of HTTR. Following technical issues were extracted from the experiences in the past two exchange works of NSs to develop a safety handling procedure; (1) The reduction and prevention of radiation exposure of workers. (2) The exclusion of falling of NS holder. Then, a new transportation container special to the NSs of HTTR was developed to solve the technical issues while keeping the cost as low as that for overhaul of conventional container and satisfying the regulation of A type transportation package.

JAEA Reports

Data acquisition of mass transport parameters

Iwasaki, Riyo*; Hama, Katsuhiro; Morikawa, Keita*; Hosoya, Shinichi*

JAEA-Technology 2016-037, 62 Pages, 2017/02

JAEA-Technology-2016-037.pdf:8.69MB

Mass transport study is mainly performed as part of Phase III in the Mizunami Underground Research Laboratory Project. In Phase III, the goal of mass transport study is to obtain a better understanding of mass transport phenomena in the geological environment as well as to develop technologies for measurement of the mass transport parameters, model construction, numerical analysis and validation of those technologies. This study was planned to understand the influence of the geological characteristics of fracture on the mass transport parameters.

JAEA Reports

Technological study about a disposal measures of low-level radioactive waste including uranium and long-half-life radionuclides

Sugaya, Toshikatsu; Nakatani, Takayoshi; Sasaki, Toshihisa*; Nakamura, Yasuo*; Sakai, Akihiro; Sakamoto, Yoshiaki

JAEA-Technology 2016-036, 126 Pages, 2017/02

JAEA-Technology-2016-036.pdf:7.28MB

At the Radioactive Waste Management and Disposal Project Department Sector of Decommissioning and Radioactive Waste Management, we performed the technological study about the disposal measures of the low-level radioactive waste targeted for uranium-bearing waste and intermediate depth disposal-based waste occurring from the process of the nuclear fuel cycle.

JAEA Reports

Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2015); Development of recovery and mitigation technology on excavation damage (Contract research)

Fukaya, Masaaki*; Takeda, Nobufumi*; Miura, Norihiko*; Ishida, Tomoko*; Hata, Koji*; Uyama, Masao*; Sato, Shin*; Okuma, Fumiko*; Hayagane, Sayaka*; Matsui, Hiroya; et al.

JAEA-Technology 2016-035, 153 Pages, 2017/02

JAEA-Technology-2016-035.pdf:37.6MB

The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) project in FY2016, detailed investigations of the (mechanical) behaviors of the plug and the rock mass around the reflood tunnel through ongoing reflood test were performed as part of (5) development of technologies for restoration and/or reduction of the excavation damage. As the result, particularly for the temperature change of the plug, its analytical results agree fairly well agree with the measurement ones. This means cracks induced by temperature stress can be prevented by the cooling countermeasure works reviewed in designing stage. In addition, for the behaviors of the plug and the bedrock boundary after reflooding the reflood tunnel, comparison between the results obtained by coupled hydro-mechanical analysis (stress-fluid coupled analysis) with the ones by several measurements, concluded that the model established based on the analysis results is generally appropriated.

JAEA Reports

Preliminary 3-dimensional analysis of groundwater flow in the surrounding environment of near surface disposal facility

Sakai, Akihiro; Kurosawa, Ryohei*; Totsuka, Masayoshi; Nakata, Hisakazu; Amazawa, Hiroya

JAEA-Technology 2016-032, 117 Pages, 2017/02

JAEA-Technology-2016-032.pdf:12.84MB

JAEA has been planning to implement near surface disposal of low level waste generated from research, medical, and industrial facilities. JAEA plans to carry out 3d analysis of groundwater flow in geological model around the disposal site because of development of migration assessment modeling of radioactivity materials in the site. In the safety demonstration test in JAEA, 3d analysis of groundwater flow was carried out on 1999. The analysis was calculated by using the code "3D-SEEP". But it is necessary to improve the conditions of the model in the analysis. Therefore, we improved the geological model which had been developed carried out 3d analysis of groundwater flow by using the current 3D-SEEP for the specified disposal site in the future. From the result, we expect that 3d analysis of groundwater flow in the environment around the specified near surface disposal site will be able to be sufficiently conducted by developing an appropriate model for the disposal site.

JAEA Reports

History and current situation of mine water treatment in Ningyo-toge Uranium Mine

Nagayasu, Takaaki; Taki, Tomihiro; Fukushima, Shigeru

JAEA-Technology 2016-031, 53 Pages, 2017/02

JAEA-Technology-2016-031.pdf:4.42MB

The forerunner of JAEA, found a smelter in 1964 to do industrialization tests of hydrometallurgical extraction process from domestic uranium ore to uranium tetrafluoride, extracted at Ningyo-toge. Yotsugi Mill Tailings Pond was constructed for the purpose of depositing slag and other things generated due to the operation of the smelter. Furthermore supernatant water from the deposition field had been treated appropriately at wastewater treatment facilities, which has been provided in the downstream site of the pond. We have been utilizing the Yotsugi Mill Tailings Pond as a temporary storage field of mine water generated from the old mining gallery, mainly. After filing an abolition report of facilities of the smelter, with the completion of industrial trials of refinery in 1982. Ningyo-toge environmental engineering center has studied for processing uranium and radium, in wastewater, which must be reduced more safely by advancing these processing technical development. Supernatant water of The Pond is treated at the wastewater treatment facilities before discharging to Ikegogawa-river. And those collateralize the emission standards to discharge to the river set at the Center with continuing stable processing. This document summarized the history of the wastewater treatment, technical development for the water treatment, and the current situation of the water treatment.

JAEA Reports

Annual report on the activities of safety in J-PARC, FY2015

Safety Division, J-PARC Center

JAEA-Review 2016-032, 134 Pages, 2017/02

JAEA-Review-2016-032.pdf:9.5MB

This annual report describes the activities on safety in Japan Proton Accelerator Research Complex (J-PARC) in FY 2015. Activities on radiation safety and general safety are described, and the technological developments and research on safety issues are summarized. In addition, another chapter was given to the "Activities on Promotion of Safety Culture".

JAEA Reports

Proceedings of Information and Opinion Exchange Conference on Geoscientific Study, 2016

Nishio, Kazuhisa*; Iyatomi, Yosuke

JAEA-Review 2016-031, 75 Pages, 2017/02

JAEA-Review-2016-031.pdf:12.03MB
JAEA-Review-2016-031(errata).pdf:0.61MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) has been conducting geoscientific study in order to establish a scientific and technological basis for the geological disposal of HLW. Technical information of the result on the geoscientific study conducted at TGC is provided at the annual Information and Opinion Exchange Conference on Geoscientific Study of TGC for exchanging opinions with researchers and engineers from universities, research organizations and private companies. This document compiles the research presentations and posters of the conference in Mizunami on October 3, 2016.

JAEA Reports

Annual report for FY2015 on the activities of Department of Decommissioning and Waste Management (April 1, 2015 - March 31, 2016)

Department of Decommissioning and Waste Management

JAEA-Review 2016-029, 90 Pages, 2017/02

JAEA-Review-2016-029.pdf:8.54MB

This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2015 to March 31, 2016. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2014; Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2016-028, 163 Pages, 2017/02

JAEA-Review-2016-028.pdf:37.29MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes the activities of our department in fiscal year of 2014.

JAEA Reports

Excavation of shafts and research galleries at the Mizunami Underground Research Laboratory (construction work of MIU part VI); Construction progress report, fiscal year 2014-2015

Geoscience Facility Construction Section, Tono Geoscience Center

JAEA-Review 2016-027, 190 Pages, 2017/02

JAEA-Review-2016-027.pdf:41.77MB

This progress report presents an outline compilation of construction activities, primary tasks performed, construction progress and safety patrol report, in Fiscal Year 2014-2015. The outline of construction activities is a summary based on the scope of work planned in Fiscal Year 2014-2015: the main activities are based on the Tono Geoscience Center weekly reports; and the construction progress is based on the planned and actual schedules. Regarding the actual performance of the construction work of MIU part VI (March 16, 2014 -March 15, 2016) performance carried out from April 1, 2014 until March 15, 2016 is described in this report and the performance started from March 16, 2016 is supposed to be described in progress report of construction work of MIU part VII.

JAEA Reports

Countercurrent extraction/stripping experiments using TDdDGA solvent extractant in a centrifugal contactor system,2; Evaluation on the improved flowsheet for MA recovery

Kibe, Satoshi; Fujisaku, Kazuhiko*; Sakamoto, Atsushi; Sano, Yuichi; Takeuchi, Masayuki; Suzuki, Hideya; Tsubata, Yasuhiro; Matsumura, Tatsuro

JAEA-Research 2016-024, 40 Pages, 2017/02

JAEA-Research-2016-024.pdf:6.73MB

The Japan Atomic Energy Agency has been developing some flowsheets with TDdDGA (N,N,N,Ntetradodecyldiglycolamide) extractant to recover MA (minor actinide) from raffinate. In this study, countercurrent experiments with the improved flowsheet, e.g. the addition of alcohol into the solvent for preventing the precipitation, were performed using miniature centrifugal contactors in order to compare the extraction/stripping behavior of each element with the mixer-settler type. As a result, no entrainments were observed and sufficient phase separation was achieved by centrifugal contactors without any abnormal fluid behavior, such as overflow. The extraction and stripping of Ln(III) which show the similar tendencies as MA could be achieved successfully, especially their stripping proceeded more efficiently in centrifugal contactors. This might be due to the increase in stripping rates by improving the flowsheet and to superior phase separation performance of centrifugal contactors.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2015

Ishimaru, Tsuneari; Umeda, Koji*; Yasue, Kenichi; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Yokoyama, Tatsunori; Fujita, Natsuko; Shimizu, Mayuko; et al.

JAEA-Research 2016-023, 91 Pages, 2017/02

JAEA-Research-2016-023.pdf:13.33MB

This annual report documents the progress of research and development (R&D) in the 1st fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. In this paper, the current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Guideline on a structural integrity assessment for reactor pressure vessel based on probabilistic fracture mechanics (Contract research)

Katsuyama, Jinya; Osakabe, Kazuya*; Uno, Shumpei; Li, Y.

JAEA-Research 2016-022, 40 Pages, 2017/02

JAEA-Research-2016-022.pdf:4.04MB

For reactor pressure vessels (RPVs) in the light water reactors, the fracture toughness decreases due to the neutron irradiation embrittlement with operating years. In Japan, to prevent RPVs from a nil-ductile fracture, deterministic fracture mechanics methods in accordance with the codes provided by the Japan Electric Association are performed for assessing the structural integrity of RPVs under the pressurized thermal shock (PTS) events by taking the neutron irradiation embrittlement into account. On the other hand, in recent years, probabilistic methodologies for PTS evaluation are introduced into regulations in Europe and the United States. For example, in the United States, a PTS screening criterion related to the reference temperature derived by the probabilistic method is stipulated. If the screening criterion is not satisfied, it is approved to perform the evaluation based on the probabilistic method by calculating numerical index such as through-wall crack frequency (TWCF). To reach the objectives that persons who have knowledge on the fracture mechanics can carry out the PFM analyses and obtain TWCF for a domestic RPVs by referring to this report, we develop the guideline on a structural integrity assessment method based on PFM by reflecting the latest knowledge and expertise.

JAEA Reports

Verification of alternative dew point hygrometer for CV-LRT in Monju

Ichikawa, Shoichi; Chiba, Yusuke; Ono, Fumiyasu; Hatori, Masakazu; Kobayashi, Takanori; Uekura, Ryoichi; Hashiri, Nobuo*; Inuzuka, Taisuke*; Kitano, Hiroshi*; Abe, Hisashi*

JAEA-Research 2016-021, 32 Pages, 2017/02

JAEA-Research-2016-021.pdf:5.0MB

In order to reduce the influence on a plant schedule of the MONJU by the maintenance of dew point hygrometers, The JAEA examined a capacitance type dew point hygrometer as an alternative dew point hygrometer for a lithium-chloride type dew point hygrometer which had been used at the CV-LRT in the MONJU. As a result of comparing a capacitance type dew point hygrometer with a lithium-chloride type dew point hygrometer at the CV-LRT (Atmosphere: nitrogen, Testing time: 24 hours), there weren't significant difference between a capacitance type dew point hygrometer and a lithium-chloride type dew point hygrometer. As a result of comparing a capacitance dew point hygrometer with a high-mirror-surface type dew point hygrometer for long term verification (Atmosphere: air, Testing time: 24 months), the JAEA confirmed that a capacitance type dew point hygrometer satisfied the instrument specification ($$pm$$2.04$$^{circ}$$C) required by the JEAC4203-2008.

JAEA Reports

Radioactivity analysis of metal samples taken from pipes of the Fugen, 5

Haraga, Tomoko; Tobita, Minoru*; Takahashi, Shigemi*; Seki, Kotaro*; Izumo, Sari; Shimomura, Yusuke; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2016-017, 53 Pages, 2017/02

JAEA-Data-Code-2016-017.pdf:3.17MB

Fugen Nuclear Power Station was shut down and now is under decommissioning. Many radioactivity concentration data of dismantled materials have to be accumulated to calculate the scaling factors of radioactive wastes and to verify that the cleared dismantled materials conform to the clearance levels. A simple and rapid radioactivity determination method for radioactive waste samples was developed by Department of Decommissioning and Waste Management. For its demonstration, the simple and rapid radioactivity determination method was applied to metal samples, which were taken from dismantled pipes in contact with heavy water or carbon dioxide gas of Fugen. This report summarizes the radioactivity data obtained from the analysis of those samples.

JAEA Reports

Survey on evacuation facilities in case of nuclear emergency in Shimane prefecture (Contract research)

Takahara, Shogo; Watanabe, Masatoshi; Oguri, Tomomi; Kimura, Masanori; Hirouchi, Jun; Munakata, Masahiro; Homma, Toshimitsu

JAEA-Data/Code 2016-016, 65 Pages, 2017/02

JAEA-Data-Code-2016-016.pdf:2.32MB

We surveyed on structural and material data on 22 facilities which are listed in local disaster management plan in Matsue city. These facilities can be divided into educational facilities, communal facilities and gymnastic hall. Height and floor-area of rooms, as well as window-area were collected as the structural data. We also collected information on constructional materials, and density of those. In addition, mass-thicknesses of the constructional materials were evaluated based on our surveys, and compared to the previous studies which were made in Japan, U.S., and European countries. Consequently, it was found that there is no significant difference of mass-thickness of constructional materials between the results of our surveys and the previous studies. However, for gymnastic hall, since thin metal plates are used for roofs, we can point out that the mass-thickness of roofs are much lower than those for other concrete facilities and clay tile roofing wooden houses.

JAEA Reports

Shielding calculation by PHITS code during replacement works of startup neutron sources for HTTR operation

Shinohara, Masanori; Ishitsuka, Etsuo; Shimazaki, Yosuke; Sawahata, Hiroaki

JAEA-Technology 2016-033, 65 Pages, 2017/01

JAEA-Technology-2016-033.pdf:11.14MB

To reduce the neutron exposure dose for workers during the replacement works of the startup neutron sources of the High Temperature Engineering Test Reactor, calculations of the exposure dose in case of temporary neutron shielding at the bottom of fuels handling machine were carried out by the PHITS code. As a result, it is clear that the dose equivalent rate due to neutron radiation can be reduced to about an order of magnitude by setting a temporary neutron shielding at the bottom of shielding cask for the fuel handling machine. In the actual replacement works, by setting temporary neutron shielding, it was achieved that the cumulative equivalent dose of the workers was reduced to 0.3 man mSv which is less than half of cumulative equivalent dose for the previous replacement works; 0.7 man mSv.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2015 (April 1, 2015 - March 31, 2016)

Information Technology Systems' Management and Operating Office

JAEA-Review 2016-024, 259 Pages, 2017/01

JAEA-Review-2016-024.pdf:31.96MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20% of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2015, the system was used for R&D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue, as well as for JAEA's major projects such as Fast Reactor Cycle System, Fusion R&D and Quantum Beam Science. This report presents a great number of R&D results accomplished by using the system in FY2015, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

A Compartment model of radionuclide migration in environment based on exposure pathways

Kurikami, Hiroshi; Niizato, Tadafumi; Tsuruta, Tadahiko; Kato, Tomoko; Kitamura, Akihiro; Kanno, Mitsuhiro*; Kurosawa, Naohiro*

JAEA-Research 2016-020, 50 Pages, 2017/01

JAEA-Research-2016-020.pdf:6.02MB

In this report, we developed a compartment model of radionuclide migration in environment based on exposure pathways in a river basin scale and performed a preliminary calculation. The results showed good agreement with some measurement, although the comparison of bed sediment, transportation to outer sea and to agricultural products with the measurement was not enough. We continue to validate the model.

JAEA Reports

Application of probability generating function to the essentials of nondestructive nuclear materials assay system using neutron correlation

Hosoma, Takashi

JAEA-Research 2016-019, 53 Pages, 2017/01

JAEA-Research-2016-019.pdf:5.71MB

Application of probability generating function for nondestructive nuclear materials assay system was studied. First, high-order neutron correlations were derived algebraically up to septuplet and basic characteristics of the correlations were investigated. It was found that higher-order correlation increases rapidly in response to the increase of leakage multiplication, crosses and leaves lower-order correlations behind, when leakage multiplication is $$>$$ 1.3 that depends on detector efficiency and counter setting. Next, fission rates and doubles count rates by fast neutron and by thermal neutron in their coexisting system were derived algebraically. It was found that the number of induced fissions per unit time by fast neutron and by thermal neutron, the number of induced fissions ($$<$$ 1) by one source neutron, and individual doubles count rates were possible to be estimated from Rossi-alpha combined distribution and measured ratio of each area obtained by differential die-away self-interrogation and conventional assay data.

JAEA Reports

Research of the tasks on risk communication enforcement (Contract research)

Tanaka, Masaru*; Aoyama, Isao*; Ishizaka, Kaoru*; Ohata, Yuki*; Fukuike, Iori*; Miyagawa, Hiroshi*; Ishimori, Yuu

JAEA-Research 2016-017, 76 Pages, 2017/01

JAEA-Research-2016-017.pdf:10.57MB

From 1955 to 2001, Japan Atomic Energy Agency (JAEA) carried out research and development projects related to uranium exploration, mining refining, conversion and enrichment at/around Ningyo-toge in Japan. Subsequently, JAEA has been conducting projects related to decommissioning of nuclear fuel cycle facilities and remediation of closed mine sites. JAEA had opportunities of communication with local stakeholders through the projects. Consensus building with local stakeholders and maintain it for over decades are important challenges for JAEA Ningyo-toge Environmental Engineering Center. For this aim, similar domestic case were investigated and compared, and evaluated about required measures for long term relationship with local stakeholder.

JAEA Reports

Review of research on Advanced Computational Science in FY2015

Center for Computational Science & e-Systems

JAEA-Evaluation 2016-003, 38 Pages, 2017/01

JAEA-Evaluation-2016-003.pdf:4.56MB

Research on advanced computational science for nuclear applications, based on "Plan to Achieve Medium to Long-term Objectives of the Japan Atomic Energy Agency (Medium to Long-term Plan)", has been performed at Center for Computational Science & e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established the committee consisting outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes the followings. (1) Results of the R&D performed at CCSE in FY 2015 (April 1st, 2015 - March 31st, 2016), (2) Results of the evaluation on the R&D by the committee in FY 2015 (April 1st, 2015 - March 31st, 2016)

JAEA Reports

A Terrestrial ecosystem model (SOLVEG) coupled with atmospheric gas and aerosol exchange processes

Katata, Genki; Ota, Masakazu

JAEA-Data/Code 2016-014, 35 Pages, 2017/01

JAEA-Data-Code-2016-014.pdf:1.64MB

In order to predict the impact of atmospheric pollutants (gases and aerosols) to the terrestrial ecosystem, new schemes for calculating the processes of dry deposition of gases and aerosols, and water and carbon cycles in terrestrial ecosystems were implemented in the one-dimensional atmosphere-SOiL-VEGetation model, SOLVEG. We made performance tests at various vegetation areas to validate the newly developed schemes. In this report, the detail in each modeled process is described with an instruction how to use the modified SOLVEG. The framework of "terrestrial ecosystem model" was developed for investigation of a change in water, energy, and carbon cycles associated with global warming and air pollution and its impact on terrestrial ecosystems.

JAEA Reports

User manual of Soil and Cesium Transport (SACT), a program to predict long-term Cs distribution using USLE for soil erosion, transportation and deposition

Saito, Hiroshi; Yamaguchi, Masaaki; Kitamura, Akihiro

JAEA-Testing 2016-003, 68 Pages, 2016/12

JAEA-Testing-2016-003.pdf:6.4MB

JAEA has developed a simple and fast simulation program "SACT" (Soil and Cesium Transport) to predict a long-term distribution of Cs deposited on the land surface due to the Fukushima Daiichi Nuclear Power Station accident. It calculates soil movement (erosion, transportation, deposition) and Cs migration, and predicts its future distribution with the assumption that it is adhered to soil. SACT uses USLE (Universal Soil Loss Equation) for potential soil loss and simple equations for soil transportation and deposition. The Cs amount is predicted by the amount of soil movement and Cs concentration ratio for each grain-size of soil. SACT is characterized by its simplicity which enables fast calculation for wide area for long-term duration using existing equations. Data for parameters are widely available and site-specific calculations are possible using data of the targeted area. This manual provides useful and necessary information to users and facilitates the use of SACT widely.

JAEA Reports

Rapid heating rupture experiment using the high chromium steel tubes

Umeda, Ryota; Kurihara, Akikazu; Shimoyama, Kazuhito

JAEA-Technology 2016-030, 50 Pages, 2016/12

JAEA-Technology-2016-030.pdf:5.22MB

In case of tube failure of a steam generator in sodium-cooled fast reactors, the reaction jet with high temperature and high velocity under highly alkaline environment is formed by cited exothermic reaction (sodium-water reaction). When the high temperature reaction jet covers the adjacent tubes, the material strength of tube decreases in the high temperature condition, and the adjacent tube may be swollen and failed by inner pressure (overheating tube rupture). For evaluation of the overheating tube rupture, tube failure is judged by comparison the hoop stress loaded by inner pressure with stress strength standard defined as creep strength depending on tube temperature. Thus, it is important to confirm the validation of this failure criterion based on the findings obtained in the simulated experiment of overheating tube rupture. In this report, for consideration on the validation of the failure criteria and elucidation on the failure mode and strength characteristics of failure, the authors carried out the rapid heating rupture experiment for the thin single and double-walled 9Cr steel tubes at high temperature up to 1500 K by using TRUST-2 rig in the Japan Atomic Energy Agency.

JAEA Reports

Fabrication and test results of testing equipment for remote-handling of MA fuel, 3; Testing equipment for fuel loading

Tazawa, Yujiro; Nishihara, Kenji; Sugawara, Takanori; Tsujimoto, Kazufumi; Sasa, Toshinobu; Eguchi, Yuta; Kikuchi, Masashi*; Inoue, Akira*

JAEA-Technology 2016-029, 52 Pages, 2016/12

JAEA-Technology-2016-029.pdf:5.34MB

Transmutation Physics Experimental Facility (TEF-P) planned in the J-PARC project uses minor actinide (MA) fuels in the experiments. These MA fuels are highly-radioactive, so the fuel handling equipment in TEF-P is necessary to be designed as remote-handling system. This report summarizes fabrication and test results of the testing equipment for fuel loading that is one of components of the testing equipment for remote-handling of MA fuels. The testing equipment which had a remote-handling system for fuel loading was fabricated. And the test in combination with the mock-up core was performed. Through the test, it was confirmed to load/take the dummy fuel pin to/from the mock-up core without failure. It was shown that the concept design of the fuel loading equipment of TEF-P was reasonable.

JAEA Reports

Determination of metal impurities in MOX powder by direct current arc atomic emission spectroscopy; Application of standard addition method for direct analysis of powder sample

Furuse, Takahiro*; Taguchi, Shigeo; Kuno, Takehiko; Surugaya, Naoki

JAEA-Technology 2016-028, 19 Pages, 2016/12

JAEA-Technology-2016-028.pdf:1.79MB

Metal impurities in MOX powder obtained from uranium and plutonium recovered from reprocessing process of spent nuclear fuel are needed to be determined for its characterization. Direct current arc atomic emission spectroscopy (DCA-AES) is one of the useful methods for direct analysis of powder sample without dissolving the analyte into aqueous solution. However, the selection of standard material, which can overcome concerns such as matrix matching, is quite important to create adequate calibration curves for DCA-AES. In this study, we apply standard addition method using the certified U$$_{3}$$O$$_{8}$$ containing known amounts of metal impurities to avoid the matrix problems. The proposed method provides good results for determination of Fe, Cr and Ni at a significant quantity level contained in MOX samples.

JAEA Reports

Preliminary tests on adsorption / desorption of alumina adsorbents

Suzuki, Yoshitaka; Ishida, Takuya*; Suzuki, Yumi*; Matsukura, Minoru*; Kurosaki, Fumio*; Nishikata, Kaori; Mimura, Hitoshi*; Tsuchiya, Kunihiko

JAEA-Technology 2016-027, 24 Pages, 2016/12

JAEA-Technology-2016-027.pdf:4.15MB

The research and development (R&D) on the production of $$^{99}$$Mo/$$^{99m}$$Tc by (n,$$gamma$$) method has been carried out in the Neutron Irradiation and Testing Reactor Center. The $$^{99}$$Mo production by (n,$$gamma$$) reaction is a simple and easy method, and it also is advantageous from viewpoints of nuclear proliferation resistance and waste management. However, it is difficult to produce the $$^{99m}$$Tc solution with high radioactive concentration because the specific radioactivity of $$^{99}$$Mo by this method is extremely low. Up to now, various Mo absorbents such as Polyzirconium Compound (PZC) and Polytitanium Compound (PTC) have been developed with high Mo adsorption efficiency. It is necessary for utilization to the generator of these absorbents to evaluate the effect of elements containing these absorbents and to assure the quality of $$^{99m}$$Tc solution. In this report, the status of R&D of the Mo adsorbents was investigated. The alumina as Mo adsorbent, which uses in medical $$^{99}$$Mo/$$^{99m}$$Tc generator, was focused and Mo adsorption/desorption properties of three kinds of alumina was evaluated by different properties such as crystal structure and specific surface.

JAEA Reports

Report on analytical activities in potentially hazardous materials mitigation measures at the Plutonium Conversion Development Facility; 2014.4 $$sim$$ 2015.12

Horigome, Kazushi; Suzuki, Hisanori; Suzuki, Yoshimasa; Ishibashi, Atsushi; Taguchi, Shigeo; Inada, Satoshi; Kuno, Takehiko; Surugaya, Naoki

JAEA-Technology 2016-026, 21 Pages, 2016/12

JAEA-Technology-2016-026.pdf:1.14MB

In order to mitigate potential hazards of storage plutonium in solution such as hydrogen generation, conversion of plutonium solution into MOX powder has been carried out since 2014 in the Plutonium Conversion Development Facility. With respect to the samples taken from the conversion process, about 3500 items of plutonium/uranium solutions and MOX powders have been analyzed for the operation control in the related analytical laboratories at the Tokai Reprocessing Plant. This paper describes the reports on analytical activities and related maintenance works in the analytical laboratories conducted from April 2014 to December 2015.

JAEA Reports

Pretreatment works for disposal of radioactive wastes produced by research activities, 1

Ishihara, Keisuke; Yokota, Akira; Kanazawa, Shingo; Iketani, Shotaro; Sudo, Tomoyuki; Myodo, Masato; Irie, Hirobumi; Kato, Mitsugu; Iseda, Hirokatsu; Kishimoto, Katsumi; et al.

JAEA-Technology 2016-024, 108 Pages, 2016/12

JAEA-Technology-2016-024.pdf:29.74MB

Radioactive isotope, nuclear fuel material and radiation generators are utilized in research institutes, universities, hospitals, private enterprises, etc. As a result, various low-level radioactive wastes (hereinafter referred to as non-nuclear radioactive wastes) are produced. Disposal site for non-nuclear radioactive wastes have not been settled yet and those wastes are stored in storage facilities of each operator for a long period. The Advanced Volume Reduction Facilities (AVRF) are built to produce waste packages so that they satisfy requirements for shallow underground disposal. In the AVRF, low-level beta-gamma solid radioactive wastes produced in the Nuclear Science Research Institute are mainly treated. To produce waste packages meeting requirements for disposal safely and efficiently, it is necessary to cut large radioactive wastes into pieces of suitable size and segregate those depending on their types of material. This report summarizes activities of pretreatment to dispose of non-nuclear radioactive wastes in the AVRF.

JAEA Reports

Results and progress of fundamental research on fission product chemistry; Progress report in 2015

Osaka, Masahiko; Miwa, Shuhei; Nakajima, Kunihisa; Di Lemma, F. G.*; Suzuki, Chikashi; Miyahara, Naoya; Kobata, Masaaki; Okane, Tetsuo; Suzuki, Eriko

JAEA-Review 2016-026, 32 Pages, 2016/12

JAEA-Review-2016-026.pdf:6.18MB

A fundamental research program on fission product (FP) chemistry has started since 2012 for the purpose of establishment of a FP chemistry database in each region of LWR under severe accident and improvement of FP chemical models based on the database. Research outputs are reflected as fundamental knowledge to both the research and development of decommissioning of Fukushima Daiichi Nuclear Power Station (1F) and enhancement of LWR safety. Four research items have thus been established considering the specific issues of 1F and the priority in the source term research area, as follows: effects of boron (B) release kinetics and thermal-hydraulic conditions on FP behavior, cesium (Cs) chemisorption and reactions with structural materials, enlargement of a thermodynamic and thermophysical properties database for FP compounds and development of experimental and analytical techniques for the reproduction of FP behavior and for direct measurement methods of chemical form of FP compounds. In this report, the research results and progress for the year 2015 are described. The main accomplishment was the installation of a reproductive test facility for FP release and transport behavior. Moreover, basic knowledge about the Cs chemisorption behavior was also obtained. In addition to the four research items, a further research item is being considered for deeper interpretation of FP behavior by the analysis of samples outside of the 1F units.

JAEA Reports

JAEA-Tokai tandem annual report 2013; April 1, 2013 - March 31, 2014

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2016-025, 101 Pages, 2016/12

JAEA-Review-2016-025.pdf:7.86MB

The JAEA-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator and superconducting booster from April 1, 2013 to March 31, 2014. Thirty-one summary reports were categorized into seven research/development fields:(1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2015

Hama, Katsuhiro; Iwatsuki, Teruki; Matsui, Hiroya; Mikake, Shinichiro; Ishibashi, Masayuki; Onoe, Hironori; Takeuchi, Ryuji; Nohara, Tsuyoshi; Sasao, Eiji; Ikeda, Koki; et al.

JAEA-Review 2016-023, 65 Pages, 2016/12

JAEA-Review-2016-023.pdf:47.32MB

The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami City in Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified three important issues on the geoscientific research program: "Development of countermeasure technologies for reducing groundwater inflow", "Development of modelling technologies for mass transport" and "Development of drift backfilling technologies", based on the latest results of the synthesizing research and development (R&D). These R&D on three important issues have been carrying out on the MIU project. In this report, the current status of R&D activities and construction in 2015 is summarized.

JAEA Reports

Study on effects of coupled phenomenon on long-term behavior for crystalline rock; FY2015 (Contract research)

Ichikawa, Yasuaki*; Kimoto, Kazushi*; Matsui, Hiroya; Kuwabara, Kazumichi; Ozaki, Yusuke

JAEA-Research 2016-018, 23 Pages, 2016/12

JAEA-Research-2016-018.pdf:4.41MB

It is important to evaluate the stability of a repository for high-level radioactive waste not only during the design, construction and operation phases, but also during the post-closure period, for time frames likely exceeding several millennia or longer. The rock mass around the tunnels could be deformed through time in response to time dependent behavior. On the other hand, it was revealed that the chemical reaction of groundwater in a rock had an influence on the long-term behavior. An evaluation of the microcracks to have an influence on this mechanical and chemical coupled phenomena should be worked on chiefly. In fiscal year 2015, using a laser Doppler vibrometer that extends a frequency band up to 20 MHz, and measuring the surface wave transmitted through the granite specimens were estimated group velocity. As a result, group velocity until 100 kHz $$sim$$ 500 kHz, revealed that tends to decrease while vibrating. The group speed estimate from a group delay was shown to be easier than the estimate by wave number - frequency spectrum. This is because in order to improve reliability, the estimated frequency band is by using a spatially averaged waveform. As a result obtained, in the case of the modeling by the viscoelastic theory of the granite and a microcrack nondestructiveness evaluation, it is thought that it is useful information in the future. In order to use the knowledge of this study, there is a need to clarify the correspondence between the microscopic properties of the medium such as a crack and crystal grain and the change of the group velocity.

JAEA Reports

Assessment of specific absorbed fractions for photons and electrons using average adult Japanese female phantom

Manabe, Kentaro; Sato, Kaoru; Takahashi, Fumiaki

JAEA-Data/Code 2016-013, 48 Pages, 2016/12

JAEA-Data-Code-2016-013.pdf:1.3MB
JAEA-Data-Code-2016-013-appendix(CD-ROM).zip:0.47MB

In the 2007 Recommendations of the International Commission on Radiological Protection (ICRP), an effective dose is defined as a sum of equivalent doses which are calculated by using male and female reference phantoms based on Caucasian physiological data and averaged over the sexes by tissue weighting factors. Specific absorbed fractions (SAFs), which are essential for internal dosimetry, depend on the body weight and organ masses of phantoms. Then, the dose coefficients, which are committed effective doses per unit intake of radionuclides, developed by ICRP on the basis of the 2007 Recommendations reflect the physical characteristics of Caucasians and are averaged over the sexes. Meanwhile, the physiques of adult Japanese are generally smaller than those of adult Caucasians, and organ masses are also different from each other. Knowledge of the influence of race differences on dose coefficients is important to apply the sex averaged dose coefficients of ICRP to the Japanese system of radiation protection. In this study, SAFs for 25 kinds of mono-energetic electrons and photons ranging from 10 keV to 10 MeV were calculated about the combinations of 67 source regions and 42 target organs using the average adult Japanese female phantom, JF-103, incorporated with a general purpose radiation transport code, MCNPX 2.6.0. The data of this report and the previously published data of JM-103 are applicable to evaluate sex-specific and sex-averaged dose coefficients reflecting the physical characteristics of the average adult Japanese for intakes of all radionuclides not to emit other than photons and electrons.

JAEA Reports

Stabilization of MOX dissolving solution at STACY

Kobayashi, Fuyumi; Sumiya, Masato; Kida, Takashi; Kokusen, Junya; Uchida, Shoji; Kaminaga, Jota; Oki, Keiichi; Fukaya, Hiroyuki; Sono, Hiroki

JAEA-Technology 2016-025, 42 Pages, 2016/11

JAEA-Technology-2016-025.pdf:17.88MB

A preliminary test on MOX fuel dissolution for the STACY critical experiments had been conducted in 2000 through 2003 at Nuclear Science Research Institute of JAEA. Accordingly, the uranyl / plutonium nitrate solution should be reconverted into oxide powder to store the fuel for a long period. For this storage, the moisture content in the oxide powder should be controlled from the viewpoint of criticality safety. The stabilization of uranium / plutonium solution was carried out under a precipitation process using ammonia or oxalic acid solution, and a calcination process using a sintering furnace. As a result of the stabilization operation, recovery rate was 95.6% for uranium and 95.0% for plutonium. Further, the recovered oxide powder was calcined again in nitrogen atmosphere and sealed immediately with a plastic bag to keep its moisture content low and to prevent from reabsorbing atmospheric moisture.

JAEA Reports

Basic properties of the concrete using the low alkaline cement (HFSC) developed by JAEA

Seno, Yasuhiro*; Nakayama, Masashi; Sugita, Yutaka; Tanai, Kenji; Fujita, Tomoo

JAEA-Data/Code 2016-011, 164 Pages, 2016/11

JAEA-Data-Code-2016-011.pdf:8.45MB
JAEA-Data-Code-2016-011-appendix(CD-ROM).zip:0.1MB

The cementitious materials are used as candidate materials for the tunnel support of the deep geological repository of high-level radioactive wastes (HLW).Generally the pH of leachate from concrete mixed Ordinary Portland Cement (OPC) shows a range of 12 to 13. The barrier function of bentonite used as a buffer material and that of host rock might be damaged by the high alkaline leachate from cementitious materials. Therefore, low alkalinity that does not damage each barrier function is necessary for cementitious materials used for the tunnel support system of the HLW geological repository. JAEA has developed a low alkaline cement named as HFSC (Highly Fly-ash contained Silicafume Cement) which the pH of the cement leachate could lower approximately 11. We have confirmed the applicability of HFSC for the tunnel support materials, by using experimentally as the shotcreting materials to the part of gallery wall at 140m, 250m and 350m depth in Horonobe Underground Research Laboratory. And moreover, HFSC has been used as the cast-in-place concrete for the shaft lining concrete at the depth of 374m-380m. This Data/Code summarized the past HFSC mix proportion test results about the fresh concrete properties and hardened concrete properties, in order to offer the information as a reference for selecting the mix proportion of HFSC concrete adopted to the disposal galleries et al. in the future.

127 (Records 1-127 displayed on this page)
  • 1