Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Shielding calculation by PHITS code during replacement works of startup neutron sources for HTTR operation

Shinohara, Masanori; Ishitsuka, Etsuo; Shimazaki, Yosuke; Sawahata, Hiroaki

JAEA-Technology 2016-033, 65 Pages, 2017/01

JAEA-Technology-2016-033.pdf:11.14MB

To reduce the neutron exposure dose for workers during the replacement works of the startup neutron sources of the High Temperature Engineering Test Reactor, calculations of the exposure dose in case of temporary neutron shielding at the bottom of fuels handling machine were carried out by the PHITS code. As a result, it is clear that the dose equivalent rate due to neutron radiation can be reduced to about an order of magnitude by setting a temporary neutron shielding at the bottom of shielding cask for the fuel handling machine. In the actual replacement works, by setting temporary neutron shielding, it was achieved that the cumulative equivalent dose of the workers was reduced to 0.3 man mSv which is less than half of cumulative equivalent dose for the previous replacement works; 0.7 man mSv.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2015 (April 1, 2015 - March 31, 2016)

Information Technology Systems' Management and Operating Office

JAEA-Review 2016-024, 259 Pages, 2017/01

JAEA-Review-2016-024.pdf:31.96MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20% of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2015, the system was used for R&D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue, as well as for JAEA's major projects such as Fast Reactor Cycle System, Fusion R&D and Quantum Beam Science. This report presents a great number of R&D results accomplished by using the system in FY2015, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

Application of probability generating function to the essentials of nondestructive nuclear materials assay system using neutron correlation

Hosoma, Takashi

JAEA-Research 2016-019, 53 Pages, 2017/01

JAEA-Research-2016-019.pdf:5.71MB

Application of probability generating function for nondestructive nuclear materials assay system was studied. First, high-order neutron correlations were derived algebraically up to septuplet and basic characteristics of the correlations were investigated. It was found that higher-order correlation increases rapidly in response to the increase of leakage multiplication, crosses and leaves lower-order correlations behind, when leakage multiplication is $$>$$ 1.3 that depends on detector efficiency and counter setting. Next, fission rates and doubles count rates by fast neutron and by thermal neutron in their coexisting system were derived algebraically. It was found that the number of induced fissions per unit time by fast neutron and by thermal neutron, the number of induced fissions ($$<$$ 1) by one source neutron, and individual doubles count rates were possible to be estimated from Rossi-alpha combined distribution and measured ratio of each area obtained by differential die-away self-interrogation and conventional assay data.

JAEA Reports

Research of the tasks on risk communication enforcement (Contract research)

Tanaka, Masaru*; Aoyama, Isao*; Ishizaka, Kaoru*; Ohata, Yuki*; Fukuike, Iori*; Miyagawa, Hiroshi*; Ishimori, Yuu

JAEA-Research 2016-017, 76 Pages, 2017/01

JAEA-Research-2016-017.pdf:10.57MB

From 1955 to 2001, Japan Atomic Energy Agency (JAEA) carried out research and development projects related to uranium exploration, mining refining, conversion and enrichment at/around Ningyo-toge in Japan. Subsequently, JAEA has been conducting projects related to decommissioning of nuclear fuel cycle facilities and remediation of closed mine sites. JAEA had opportunities of communication with local stakeholders through the projects. Consensus building with local stakeholders and maintain it for over decades are important challenges for JAEA Ningyo-toge Environmental Engineering Center. For this aim, similar domestic case were investigated and compared, and evaluated about required measures for long term relationship with local stakeholder.

JAEA Reports

Review of research on Advanced Computational Science in FY2015

Center for Computational Science & e-Systems

JAEA-Evaluation 2016-003, 38 Pages, 2017/01

JAEA-Evaluation-2016-003.pdf:4.56MB

Research on advanced computational science for nuclear applications, based on "Plan to Achieve Medium to Long-term Objectives of the Japan Atomic Energy Agency (Medium to Long-term Plan)", has been performed at Center for Computational Science & e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established the committee consisting outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes the followings. (1) Results of the R&D performed at CCSE in FY 2015 (April 1st, 2015 - March 31st, 2016), (2) Results of the evaluation on the R&D by the committee in FY 2015 (April 1st, 2015 - March 31st, 2016)

JAEA Reports

A Terrestrial ecosystem model (SOLVEG) coupled with atmospheric gas and aerosol exchange processes

Katata, Genki; Ota, Masakazu

JAEA-Data/Code 2016-014, 35 Pages, 2017/01

JAEA-Data-Code-2016-014.pdf:1.64MB

In order to predict the impact of atmospheric pollutants (gases and aerosols) to the terrestrial ecosystem, new schemes for calculating the processes of dry deposition of gases and aerosols, and water and carbon cycles in terrestrial ecosystems were implemented in the one-dimensional atmosphere-SOiL-VEGetation model, SOLVEG. We made performance tests at various vegetation areas to validate the newly developed schemes. In this report, the detail in each modeled process is described with an instruction how to use the modified SOLVEG. The framework of "terrestrial ecosystem model" was developed for investigation of a change in water, energy, and carbon cycles associated with global warming and air pollution and its impact on terrestrial ecosystems.

JAEA Reports

User manual of Soil and Cesium Transport (SACT), a program to predict long-term Cs distribution using USLE for soil erosion, transportation and deposition

Saito, Hiroshi; Yamaguchi, Masaaki; Kitamura, Akihiro

JAEA-Testing 2016-003, 68 Pages, 2016/12

JAEA-Testing-2016-003.pdf:6.4MB

JAEA has developed a simple and fast simulation program "SACT" (Soil and Cesium Transport) to predict a long-term distribution of Cs deposited on the land surface due to the Fukushima Daiichi Nuclear Power Station accident. It calculates soil movement (erosion, transportation, deposition) and Cs migration, and predicts its future distribution with the assumption that it is adhered to soil. SACT uses USLE (Universal Soil Loss Equation) for potential soil loss and simple equations for soil transportation and deposition. The Cs amount is predicted by the amount of soil movement and Cs concentration ratio for each grain-size of soil. SACT is characterized by its simplicity which enables fast calculation for wide area for long-term duration using existing equations. Data for parameters are widely available and site-specific calculations are possible using data of the targeted area. This manual provides useful and necessary information to users and facilitates the use of SACT widely.

JAEA Reports

Report on analytical activities in potentially hazardous materials mitigation measures at the Plutonium Conversion Development Facility; 2014.4 $$sim$$ 2015.12

Horigome, Kazushi; Suzuki, Hisanori; Suzuki, Yoshimasa; Ishibashi, Atsushi; Taguchi, Shigeo; Inada, Satoshi; Kuno, Takehiko; Surugaya, Naoki

JAEA-Technology 2016-026, 21 Pages, 2016/12

JAEA-Technology-2016-026.pdf:1.14MB

In order to mitigate potential hazards of storage plutonium in solution such as hydrogen generation, conversion of plutonium solution into MOX powder has been carried out since 2014 in the Plutonium Conversion Development Facility. With respect to the samples taken from the conversion process, about 3500 items of plutonium/uranium solutions and MOX powders have been analyzed for the operation control in the related analytical laboratories at the Tokai Reprocessing Plant. This paper describes the reports on analytical activities and related maintenance works in the analytical laboratories conducted from April 2014 to December 2015.

JAEA Reports

Study on effects of coupled phenomenon on long-term behavior for crystalline rock; FY2015 (Contract research)

Ichikawa, Yasuaki*; Kimoto, Kazushi*; Matsui, Hiroya; Kuwabara, Kazumichi; Ozaki, Yusuke

JAEA-Research 2016-018, 23 Pages, 2016/12

JAEA-Research-2016-018.pdf:4.41MB

It is important to evaluate the stability of a repository for high-level radioactive waste not only during the design, construction and operation phases, but also during the post-closure period, for time frames likely exceeding several millennia or longer. The rock mass around the tunnels could be deformed through time in response to time dependent behavior. On the other hand, it was revealed that the chemical reaction of groundwater in a rock had an influence on the long-term behavior. An evaluation of the microcracks to have an influence on this mechanical and chemical coupled phenomena should be worked on chiefly. In fiscal year 2015, using a laser Doppler vibrometer that extends a frequency band up to 20 MHz, and measuring the surface wave transmitted through the granite specimens were estimated group velocity. As a result, group velocity until 100 kHz $$sim$$ 500 kHz, revealed that tends to decrease while vibrating. The group speed estimate from a group delay was shown to be easier than the estimate by wave number - frequency spectrum. This is because in order to improve reliability, the estimated frequency band is by using a spatially averaged waveform. As a result obtained, in the case of the modeling by the viscoelastic theory of the granite and a microcrack nondestructiveness evaluation, it is thought that it is useful information in the future. In order to use the knowledge of this study, there is a need to clarify the correspondence between the microscopic properties of the medium such as a crack and crystal grain and the change of the group velocity.

9 (Records 1-9 displayed on this page)
  • 1