Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Tritium accumulation and release from Li$$_{2}$$TiO$$_{3}$$ during long-term irradiation in the WWR-K reactor

Tazhibayeva, I.*; Beckman, I.*; Shestakov, V.*; Kulsartov, T.*; Chikhray, E.*; Kenzhin, E.*; Kuykabaeva, A.*; Kawamura, Hiroshi; Tsuchiya, Kunihiko

Journal of Nuclear Materials, 417(1-3), p.748 - 752, 2011/10

 Times Cited Count:16 Percentile:75.9(Materials Science, Multidisciplinary)

For the first time the data was obtained on tritium release from $$^{6}$$Li-enriched (96%) lithium metatitanate under high lithium burn-up (up to 23%). Proposed mathematics and software of the reactor experiments allowed to interpret the experimental results of tritium release study. Tritium was continuously generated as a result of the nuclear reaction of lithium-6 and thermal neutrons under variable thermal impacts (graduated heating and cooling) on lithium metatitanate Li$$_{2}$$TiO$$_{3}$$. Main gas release parameters were calculated in order to assess acceptability of the use of lithium metatitanate granules in tritium breeders; the parameters are as follows: gas release rate, tritium retention in the materials, retention time, activation energy of thermal desorption HT, activation energy of volume diffusion T$$^{+}$$, as well as corresponding pre-exponential (frequency) indexes. It was discovered that the tritium release process is mainly controlled by tritium volume diffusion, however, capture of tritium by the point defects and tritium molization at the material's surface played the certain role in the process as well. It was discovered that as lithium is burnt-up, the activation energy of tritium release decreases and tends to a constant value under high lithium-6 burn-up.

Journal Articles

Tritium generation in lithium ceramics Li$$_{2}$$TiO$$_{3}$$ for fusion reactor blanket

Tazhibayeva, I. L.*; Kenzhin, E. A.*; Kulsartov, T. V.*; Kuykabayeva, A. A.*; Shestakov, V.*; Chikhray, E.*; Gizatulin, S.*; Maksimkin, O. P.*; Beckman, I. N.*; Kawamura, Hiroshi; et al.

Questions of Atomic Science and Technology, 2, p.3 - 11, 2008/00

Lithium titanate (Li$$_{2}$$TiO$$_{3}$$) was chosen as a tentative reference material from viewpoints of good tritium recovery at low temperatures and of low tritium inventory and chemical stability for the breeding blanket in fusion reactors. The results of the irradiation tests of Li$$_{2}$$TiO$$_{3}$$ in the WWR-K of NNC-RK are described in this paper. 96at% $$^{6}$$Li-enriched Li$$_{2}$$TiO$$_{3}$$ pebbles and disks were prepared as the irradiation specimens and these specimens were irradiated during 220 days (5350 hours) at the reactor power of 6 MWt. Tritium release was measured continuously during irradiation tests and tritium release properties were evaluated. The mechanics describing generation and release of tritium from the irradiated Li$$_{2}$$TiO$$_{3}$$ were analyzed. There was estimated tritium loss due to recoil energy and binding of tritium in HTO, and there was calculated stationary tritium release due to diffusion under constant temperature and under thermal cycling.

Oral presentation

Main results of long-term high lithium burn-up irradiation test in Li$$_{2}$$TiO$$_{3}$$ and Li$$_{2}$$TiO$$_{3}$$ + 5mol% TiO$$_{2}$$ ceramics for solid breeding blanket

Tazhibayeva, I.*; Kenzhin, E. A.*; Kulsartov, T.*; Beckman, I.*; Chikhray, E.*; Shestakov, V. P.*; Kuykabaeva, A.*; Maksimkin, O.*; Kawamura, Hiroshi; Tsuchiya, Kunihiko

no journal, , 

The paper contains the results of the integrated material study of lithium ceramics Li$$_{2}$$TiO$$_{3}$$ and Li$$_{2}$$TiO$$_{3}$$ + 5mol% TiO$$_{2}$$ enriched by $$^{6}$$Li (up to 96%). The ceramics were irradiated in the WWR-K reactor during 5350 hours under the temperature range of 400-900$$^{circ}$$С with ${it in situ}$ study of tritium generated during irradiation. The post-radiation studies allowed to determine quantity of residual tritium, degree of lithium burn-up, strength characteristics of lithium ceramic with the lithium burn-up up to 20-23%, ceramic density, changes in the sample microstructure, heat characteristic of the ceramics and their changes due to neutron irradiation, changes of element and phase composition of the samples, and the parameters of tritium release from lithium ceramics. It was showed that the ceramic samples irradiated under lower temperature are characterized by sufficiently small degree of $$^{6}$$Li burn-up. It was established that irradiation resulted in softening of lithium ceramic; at that the effect is more prominent for lower irradiation temperatures. The quantity of tritium released during a reactor's campaign is somewhat increasing with increase of a campaign's number, but quantity of tritium released from lithium titanate per hour doesn't depend on duration of irradiation. Thus, despite of lithium burn-up, tritium flow from lithium titanate isn't changed during long-term irradiation since reduction of the strength of the tritium source (due to lithium burn-up) is compensated by increase in mobility of tritium in defect lattice. The obtained results showed that a breeder on the basis of $$^{6}$$Li-enriched lithium titanate can be a permanent source of tritium during one year of reactor operation at least.

3 (Records 1-3 displayed on this page)
  • 1