Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 20
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Towards laser driven hadron cancer radiotherapy; A Review of progress

Ledingham, K.*; Bolton, P. R.*; Shikazono, Naoya; Ma, C.-M.*

Applied Sciences (Internet), 4(3), p.402 - 443, 2014/09

 Times Cited Count:90 Percentile:89.45(Chemistry, Multidisciplinary)

Journal Articles

Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams

Bolton, P.; Borghesi, M.*; Brenner, C.*; Carroll, D. C.*; De Martinis, C.*; Fiorini, F.*; Flacco, A.*; Floquet, V.*; Fuchs, J.*; Gallegos, P.*; et al.

Physica Medica; European Journal of Medical Physics, 30(3), p.255 - 270, 2014/05

 Times Cited Count:77 Percentile:88.84(Radiology, Nuclear Medicine & Medical Imaging)

Journal Articles

Correlation between laser accelerated MeV proton and electron beams using simple fluid model for target normal sheath acceleration

Tampo, Motonobu; Awano, Shinya*; Bolton, P.; Kondo, Kiminori; Mima, Kunioki*; Mori, Yoshitaka*; Nakamura, Hirotaka*; Nakatsutsumi, Motoaki*; Stephens, R. B.*; Tanaka, Kazuo*; et al.

Physics of Plasmas, 17(7), p.073110_1 - 073110_5, 2010/07

 Times Cited Count:12 Percentile:42.46(Physics, Fluids & Plasmas)

Journal Articles

Generation of above 10$$^{10}$$ temporal contrast, above 10$$^{20}$$W/cm$$^2$$ peak intensity pulses at a 10 Hz repetition rate using an OPCPA preamplifier in a double CPA, Ti:sapphire laser system

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya; Tanoue, Manabu*; Okada, Hajime; Kondo, Shuji; Kanazawa, Shuhei; Sagisaka, Akito; Daito, Izuru; et al.

AIP Conference Proceedings 1153, p.3 - 6, 2009/07

We demonstrate a high-contrast, high-intensity double chirped-pulse amplification (CPA) Ti:sapphire laser system using an optical parametric chirped-pulse amplifier (OPCPA) as a preamplifier. By injecting cleaned microjoule seed pulses into the OPCPA, a temporal contrast greater than 10$$^{10}$$ within picosecond times before the main femtosecond pulse is demonstrated with the output pulse energy of 1.7 J and pulse duration of 30 fs, corresponding to a peak power of 60 TW at a 10 Hz repetition rate. This system uses a cryogenically-cooled Ti:sapphire final amplifier and generates focused peak intensities in excess of 10$$^{20}$$ W/cm$$^2$$.

Journal Articles

Ion acceleration in the interaction of short pulse laser radiation with the cluster-gas target

Fukuda, Yuji; Faenov, A. Y.; Tampo, Motonobu; Pikuz, T. A.*; Nakamura, Tatsufumi; Kando, Masaki; Hayashi, Yukio; Yogo, Akifumi; Sakaki, Hironao; Kameshima, Takashi; et al.

AIP Conference Proceedings 1153, p.85 - 93, 2009/07

When the target consists of solid-density clusters embedded in the background gas, its irradiation by high intensity laser light renders ion acceleration a truly unique property. We present that the cluster-gas target, which consists of submicron-sized clusters and background gases, irradiated by a few TW laser pulse produces high energy ions upward of the order of 10-20 MeV/n in the forward direction.

Journal Articles

Ion acceleration using temporally-controlled high-intensity laser pulses

Yogo, Akifumi; Daido, Hiroyuki; Mori, Michiaki; Kiriyama, Hiromitsu; Bulanov, S. V.; Bolton, P. R.; Esirkepov, T. Z.; Ogura, Koichi; Sagisaka, Akito; Orimo, Satoshi; et al.

Reza Kenkyu, 37(6), p.449 - 454, 2009/06

The acceleration of protons driven by a high-intensity laser is comprehensively investigated via control of the target density by using ASE just before the time of the main-laser interaction. Two cases were investigated for which the ASE intensity differed by three orders of magnitude: In the low contrast case the beam centre for higher energy protons is shifted closer to the laser-propagation direction of 45$$^{circ}$$, while the center of lower-energy beam remains near the target normal direction. Particle-in-cell simulations reveal that the characteristic proton acceleration is due to the quasistatic magnetic field on the target rear side with the magnetic pressure sustaining a charge separation electrostatic field.

Journal Articles

Focusing and spectral enhancement of a repetition-rated, laser-driven, divergent multi-MeV proton beam using permanent quadrupole magnets

Nishiuchi, Mamiko; Daito, Izuru; Ikegami, Masahiro; Daido, Hiroyuki; Mori, Michiaki; Orimo, Satoshi; Ogura, Koichi; Sagisaka, Akito; Yogo, Akifumi; Pirozhkov, A. S.; et al.

Applied Physics Letters, 94(6), p.061107_1 - 061107_3, 2009/02

 Times Cited Count:59 Percentile:87.48(Physics, Applied)

A pair of conventional permanent magnet quadrupoles is used to focus a 2.4 MeV laser-driven proton beam at a 1 Hz repetition rate. The magnetic field strengths are 55 T/m and 60 T/m for the first and second quadrupoles respectively. The proton beam is focused to a spot size (full width at half maximum) of 2.7$$times$$8 mm$$^{2}$$ at a distance of 650 mm from the source. This result is in good agreement with a Monte Carlo particle trajectory simulation.

Journal Articles

New method to measure the rise time of a fast pulse slicer for laser ion acceleration research

Mori, Michiaki; Yogo, Akifumi; Kiriyama, Hiromitsu; Nishiuchi, Mamiko; Ogura, Koichi; Orimo, Satoshi; Ma, J.*; Sagisaka, Akito; Kanazawa, Shuhei; Kondo, Shuji; et al.

IEEE Transactions on Plasma Science, 36(4), p.1872 - 1877, 2008/08

 Times Cited Count:7 Percentile:28.47(Physics, Fluids & Plasmas)

A dependence of cut-off proton kinetic energy on laser prepulse duration has been observed. ASE pedestal duration is controlled by a fast electro-optic pulse slicer where the risetime is estimated to be 130 ps. We demonstrate a new correlated spectral technique for determining this risetime using a stretched, frequency chirped pulse.

Oral presentation

Quantum beam generation via the laser-cluster interactions

Fukuda, Yuji; Faenov, A. Y.; Pikuz, T. A.*; Kando, Masaki; Kotaki, Hideyuki; Daito, Izuru; Hayashi, Yukio; Homma, Takayuki; Kawase, Keigo; Kameshima, Takashi; et al.

no journal, , 

The novel soft X-ray light source using the supersonic expansion of the mixed gas of He and CO$$_2$$, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft X-rays from the CO$$_2$$ clusters. Using this soft X-ray emissions, nanostructure images of 100-nm thick Mo foils in a wide field of view (mm$$^2$$ scale) with high spatial resolution (800 nm) are obtained with high dynamic range LiF crystal detectors. We also demonstrate the acceleration of charged particles via the laser-cluster interactions.

Oral presentation

Ion acceleration in the interaction of short pulse laser radiation with the cluster-gas targets

Fukuda, Yuji; Faenov, A. Y.; Tampo, Motonobu; Yogo, Akifumi; Pikuz, T. A.*; Kando, Masaki; Kotaki, Hideyuki; Daito, Izuru; Hayashi, Yukio; Kawase, Keigo; et al.

no journal, , 

A near-critical plasma cloud embedded in an underdense plasma, created by the interaction of laser prepulses with the cluster-gas target, is irradiated by the high-repetition laser pulses. Through a shadowgraphy, observed is a 3-mm long stable channel formation, from which high energy ions, accelerated up to 10 MeV/n in the laser propagation direction, are detected in a stack of plastic nuclear track detectors.

Oral presentation

Laser-driven proton beam irradiation on in-vitro human cancer cells

Yogo, Akifumi; Sato, Katsutoshi*; Nishikino, Masaharu; Mori, Michiaki; Teshima, Teruki*; Numasaki, Hodaka*; Murakami, Masao*; Ogura, Koichi; Sagisaka, Akito; Orimo, Satoshi; et al.

no journal, , 

In this work, we demonstrate the irradiation effect of laser accelerated protons induced on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of $$gamma$$-H2AX foci as an indicator of DNA double-strand breaks. This is the first result showing that laser-driven ion beams can generate a lethal effect on cancer cells.

Oral presentation

Development of a laser-driven proton irradiation system for a biological study

Yogo, Akifumi; Sato, Katsutoshi*; Nishikino, Masaharu; Mori, Michiaki; Teshima, Teruki*; Numasaki, Hodaka*; Murakami, Masao*; Ogura, Koichi; Sagisaka, Akito; Orimo, Satoshi; et al.

no journal, , 

We have newly developed a proton-beam irradiation system driven by a high-intensity laser for biological studies. In the laser-ion acceleration, X-rays and electrons are generated simultaneously with the protons. In order to remove them, we equiped a magnetic analyzer in the irradiation system. Moreover, we developed a cell capsule, which was newly designed to insert in-vitro cell samples into the vacuum chamber used for the proton generation. We also report the result of 20-Gy proton irradiation of a human lung cancer cells.

Oral presentation

Toward integrated, laser-driven, ion accelerator systems for hadron therapy at PMRC

Bolton, P. R.; Hori, Toshihiko; Sakaki, Hironao; Sutherland, K.*; Suzuki, Masayuki; Wu, J.*

no journal, , 

Oral presentation

Toward integrated, laser-driven ion accelerator systems for hadron therapy at PMRC

Bolton, P. R.; Hori, Toshihiko; Sakaki, Hironao; Sutherland, K.*; Suzuki, Masayuki; Wu, J.*

no journal, , 

Oral presentation

Transportation of the laser-driven MeV proton beam for the application; Spatial focusing and spectral enhancement with PMQs

Nishiuchi, Mamiko; Daito, Izuru; Mori, Michiaki; Orimo, Satoshi; Ogura, Koichi; Sagisaka, Akito; Sakaki, Hironao; Hori, Toshihiko; Yogo, Akifumi; Pirozhkov, A. S.; et al.

no journal, , 

From our previous research, we have successfully produce MeV proton beam by 1Hz repetition rate stabely from the interaction between the femto-second TW laser with solid target. Produced proton beam exhibits lower emittance. The number of proton beam is 10$$^{13}$$. However, it shows large divergence angle of 10 degree. The energy spectrum exhibits 100% energy spread. These are problematic for some specific applications. In this study we transported the laser-driven proton beam with permanent quadrapole magnet for the future application. We successfully obtain focused proton beam as well as the monochromatic proton beam. Those spatial distribution at the focus point as well as the spectral information is well reproduced by the montecalro simulation.

Oral presentation

Oral presentation

High intensity, high beam quality laser pulses with a double CPA, OPCPA/Ti:sapphire laser system for studying relativistic light-matter interactions

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya; Tanoue, Manabu*; Okada, Hajime; Kondo, Shuji; Kanazawa, Shuhei; Sagisaka, Akito; Daito, Izuru; et al.

no journal, , 

We demonstrated laser peak intensity above 10$$^{20}$$W/cm$$^2$$ and temporal contrast exceeding 10$$^{10}$$ at a 10 Hz repetition rate with a 60 TW, 30 fs laser (J-KAREN laser). Here we report the upgrade of the J-KAREN laser to the petawatt peak power level. This is accomplished by adding a Ti:sapphire booster amplifier downstream of the final amplifier chain of the 60 TW J-KAREN laser system. Stretched pulses of energy 3 J from the previous J-KAREN laser are up-collimated and introduced into the final booster amplifier. The booster amplifier consists of a large-aperture Ti:sapphire crystal pumped by a frequency-doubled Nd:silicate glass laser with pulse energy 60 J. Diffractive optical elements are used for pump beam homogenization to maintain a uniform spatial profile and reliable, damage-free operation. The system produces an uncompressed output pulse energy exceeding 30 J with a near homogeneous flat-top spatial distribution, indicating potential peak power of 500 TW.

Oral presentation

Recent advances on the J-KAREN laser upgrade

Kiriyama, Hiromitsu; Mori, Michiaki; Pirozhkov, A. S.; Ogura, Koichi; Nishiuchi, Mamiko; Kando, Masaki; Sakaki, Hironao; Kon, Akira; Kanasaki, Masato; Tanaka, Hirotaka; et al.

no journal, , 

We report recent progress on the J-KAREN laser upgrade to realize 10$$^{22}$$ W/cm$$^{2}$$ intensity at 0.1 Hz. Our current high-spatiotemporal-quality broadband pulses of over 20 J will be further amplified in the final amplifier.

20 (Records 1-20 displayed on this page)
  • 1