Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

$$^{239}$$Pu nuclear magnetic resonance in the candidate topological insulator PuB$$_4$$

Dioguardi, A. P.*; Yasuoka, Hiroshi*; Thomas, S. M.*; Sakai, Hironori; Cary, S. K.*; Kozimor, S. A.*; Albrecht-Schmitt, T. E.*; Choi, H. C.*; Zhu, J.-X.*; Thompson, J. D.*; et al.

Physical Review B, 99(3), p.035104_1 - 035104_6, 2019/01

 Times Cited Count:5 Percentile:38.09(Materials Science, Multidisciplinary)

We present a detailed nuclear magnetic resonance (NMR) study of $$^{239}$$Pu in bulk and powdered single-crystal plutonium tetraboride (PuB$$_4$$), which has recently been investigated as a potential correlated topological insulator. The $$^{239}$$Pu NMR spectra are consistent with axial symmetry of the shift tensor showing for the first time that $$^{239}$$Pu NMR can be observed in an anisotropic environment and up to room temperature. The temperature dependence of the $$^{239}$$Pu shift, combined with a relatively long spin-lattice relaxation time ($$T_1$$), indicate that PuB$$_4$$ adopts a nonmagnetic state with gaplike behavior consistent with our density functional theory calculations. The temperature dependencies of the NMR Knight shift and $$T^{-1}$$ imply bulk gaplike behavior confirming that PuB$$_4$$ is a good candidate topological insulator.

1 (Records 1-1 displayed on this page)
  • 1