Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Mechanical properties of high manganese austenitic stainless steel JK2LB for ITER central solenoid jacket material

Saito, Toru; Kawano, Katsumi; Yamazaki, Toru; Ozeki, Hidemasa; Isono, Takaaki; Hamada, Kazuya*; Devred, A.*; Vostner, A.*

Physics Procedia, 67, p.1016 - 1021, 2015/07

 Times Cited Count:5 Percentile:84.31

Journal Articles

Benchmarking of mechanical test facilities related to ITER CICC steel jackets

Vostner, A.*; Pong, I.*; Bessette, D.*; Devred, A.*; Sgobba, S.*; Jung, A.*; Weiss, K.-P.*; Jewell, M. C.*; Liu, S.*; Yu, W.*; et al.

IEEE Transactions on Applied Superconductivity, 23(3), p.9500705_1 - 9500705_5, 2013/06

 Times Cited Count:11 Percentile:53.14(Engineering, Electrical & Electronic)

The ITER Cable-In-Conduit Conductor (CICC) used in the superconducting magnet system consists of a cable made of 300 to 1440 strands housed in a stainless steel tube (a.k.a. jacket or conduit). There are circular, square, as well as circle-in-square jackets, made of either a very low carbon AISI 316LN grade stainless steel or a high Mn austenitic stainless steel developed for ITER called JK2LB. Selected mechanical properties of the base material and weld joint were tested at room temperature and/or cryogenic temperatures ($$<$$ 7 K). The Domestic Agencies (DAs) reference laboratories and the ITER-IO appointed reference laboratories, CERN and Karlsruhe Institute of Technology (KIT) performed mechanical tests. This paper will compare the test results (e.g. elongation to failure) from different laboratories.

Journal Articles

Test results of ITER conductors in the SULTAN facility

Bruzzone, P.*; Stepanov, B.*; Wesche, R.*; Mitchell, N.*; Devred, A.*; Nunoya, Yoshihiko; Tronza, V.*; Kim, K.*; Boutboul, T.*; Martovetsky, N.*; et al.

Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 8 Pages, 2013/03

Starting March 2007, over 60 ITER cable-in-conduit conductors (CICC) have been tested in the SULTAN test facility, Switzerland. For the NbTi CICC, the results confirm the prediction from the strand data, which are made taking the peak field over the conductor cross section as operating field. All the NbTi samples passed the supplier qualification phase. For the Nb$$_{3}$$Sn CICC, the performance prediction is not straightforward because of the irreversible degradation caused by filament damage occurring during cyclic loading. At the first run of the test campaign, the performance of all the Nb$$_{3}$$Sn samples largely meets the target for all the tested samples. Contrary to the NbTi CICC case, the n-index of the transition is substantially lower than in the strands, providing evidence of irreversible degradation. The performance loss upon load cycles and thermal cycles has a broad range among the various conductor samples.

Journal Articles

ITER magnet systems; From qualification to full scale construction

Nakajima, Hideo; Hemmi, Tsutomu; Iguchi, Masahide; Nabara, Yoshihiro; Matsui, Kunihiro; Chida, Yutaka; Kajitani, Hideki; Takano, Katsutoshi; Isono, Takaaki; Koizumi, Norikiyo; et al.

Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 8 Pages, 2013/03

The ITER organization and 6 Domestic Agencies (DA) have been implementing the construction of ITER superconducting magnet systems. Four DAs have already started full scale construction of Toroidal Field (TF) coil conductors. The qualification of the radial plate manufacture has been completed, and JA and EU are ready for full scale construction. JA has qualified full manufacturing processes of the winding pack with a 1/3 prototype and made 2 full scale mock-ups of the basic segments of TF coil structure to optimize and industrialize the manufacturing process. Preparation and qualification of the full scale construction of the TF coil winding is underway by EU. Procurement of the manufacturing equipment is near completion and qualification of manufacturing processes has already started. The constructions of other components of the ITER magnet systems are also going well towards the main goal of the first plasma in 2020.

Journal Articles

Preparation for the ITER central solenoid conductor manufacturing

Hamada, Kazuya; Nunoya, Yoshihiko; Isono, Takaaki; Takahashi, Yoshikazu; Kawano, Katsumi; Saito, Toru; Oshikiri, Masayuki; Uno, Yasuhiro; Koizumi, Norikiyo; Nakajima, Hideo; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4203404_1 - 4203404_4, 2012/06

 Times Cited Count:17 Percentile:64.09(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) has the responsibility for procurement of all of the ITER central solenoid (CS) conductor lengths. The CS conductor is composed of 576 Nb$$_{3}$$ Sn superconducting strands and 288 Cu strands assembled together into a multistage cable and protected by a circle-in-square sheath tube (jacket) with the outer dimension of 49 mm. In preparation for CS conductor production, the following R&D activities have been performed; (1) Mechanical tests at 4 K have been performed for jacket candidate materials such as 316LN and JK2LB, (2) Welding test for filler selection, (3) Measurement of coefficient of sliding friction using a 100-m long dummy cable, (4) Deformation characteristics of the conductor cross section after compaction and spooling. As a result of these R&D, the CS conductor jacket manufacturing technologies have been confirmed to start the procurement of the CS conductor.

Journal Articles

Strain and magnetic-field characterization of a bronze-route Nb$$_3$$Sn ITER wire; Benchmarking of strain measurement facilities at NIST and University of Twente

Cheggour, N.*; Nijhuis, A.*; Krooshoop, H. J. G.*; Lu, X. F.*; Splett, J.*; Stauffer, T. C.*; Goodrich, L. F.*; Jewell, M. C.*; Devred, A.*; Nabara, Yoshihiro

IEEE Transactions on Applied Superconductivity, 22(3), p.4805104_1 - 4805104_4, 2012/06

 Times Cited Count:10 Percentile:50.28(Engineering, Electrical & Electronic)

A benchmarking experiment was conducted to compare strain measurement facilities at the National Institute of Standards and Technology (NIST) and the University of Twente. The critical current of a bronze-route Nb$$_3$$Sn ITER wire was measured as a function of axial strain and magnetic field in liquid helium temperature at both institutes. NIST used a Walters' spring strain device and University of Twente used a Pacman apparatus. The ITER bronze-route wire investigated had a very high irreversible strain limit and allowed the comparison of data over a wide range of applied strain from $$-1%$$ to $$+1%$$. A full account of the data analysis and comparisons will be presented. Measurement protocols and parameterization procedures will also be discussed.

Journal Articles

Status of ITER conductor development and production

Devred, A.*; Backbier, I.*; Bessette, D.*; Bevillard, G.*; Gardner, M.*; Jewell, M.*; Mitchell, N.*; Pong, I.*; Vostner, A.*

IEEE Transactions on Applied Superconductivity, 22(3), p.4804909_1 - 4804909_9, 2012/06

 Times Cited Count:127 Percentile:96.93(Engineering, Electrical & Electronic)

The ITER magnet system is made up of 4 sets of coils: 18 Toroidal Field (TF) coils, 6 Poloidal Field (PF) coils, 6 Central Solenoid (CS) coils and 9 pairs of Correction Coils (CC's). All of them are wound from Cable-In-Conduit Conductors (CICC's) made up of superconducting and copper strands assembled into a multistage, rope-type cable inserted into a conduit of butt-welded austenitic steel tubes. The TF and CS conductors call for about 500 tons of Nb$$_3$$Sn strands while the PF and CC conductors need around 250 tons of NbTi strands. The required amount of Nb$$_3$$Sn strands far exceeds pre-existing industrial capacity and calls for a significant worldwide production scale up. After recalling the technical requirements defined by the ITER Internal Organization (IO), we detail the in-kind procurement sharing of the various conductor types among the 6 ITER Domestic Agencies (DA's) involved: China, Europe, Japan, South Korea, Russia, and the United States, and we present a status of ongoing productions. The most advanced production is that for the TF coils, where all 6 DAs have qualified suppliers and have already registered more than 30% of the expected production data into the web-based ITER Conductor Database developed by the IO.

Journal Articles

Technology development and mass production of Nb$$_{3}$$Sn conductors for ITER toroidal field coils in Japan

Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

Nuclear Fusion, 51(11), p.113015_1 - 113015_11, 2011/11

 Times Cited Count:12 Percentile:46.97(Physics, Fluids & Plasmas)

Japan Atomic Energy Agency is procuring the Nb$$_{3}$$Sn superconductors for Toroidal Field (TF) Coils under the ITER project. Because manufacturing amount of Nb$$_{3}$$Sn strands is quite large compared with the past experience and required superconducting performance is higher than that of the model coils which have been fabricated and tested in the ITER-EDA, quality control technique is very important for the manufacture of the strands. Sophisticated control technique is also required for the jacketing, in order to fabricate the conductors with the precise outer diameter and without leakage at welding part. This paper summarizes the technical developments leading to the first successful mass production of ITER TF conductors.

Journal Articles

First qualification of ITER toroidal field coil conductor jacketing

Hamada, Kazuya; Takahashi, Yoshikazu; Isono, Takaaki; Nunoya, Yoshihiko; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Koizumi, Norikiyo; Nakajima, Hideo; et al.

Fusion Engineering and Design, 86(6-8), p.1506 - 1510, 2011/10

 Times Cited Count:11 Percentile:66.95(Nuclear Science & Technology)

Japan Atomic Energy Agency has a responsibility for procurement of the ITER toroidal field coil conductors as Japanese Domestic Agency (JADA) of the ITER project. The TF conductor is a circular shaped cable-in-conduit conductor, which is composed of cable and stainless steel conduit (jacket). The outer diameter and wall thickness of jacket are 43.7mm and 2mm, respectively. The cable consists of 900 Nb$$_{3}$$Sn superconducting strands and 522 Cu strands. The length of TF conductor is 780m in maximum. Preparation of conductor fabrication was completed in December 2009. And then, to demonstrate a conductor manufacturing procedure, JADA fabricated 780m-long Cu dummy conductor as a process qualification. Finally, the 780m-long Cu dummy conductor has been successfully completed, ahead of other domestic agencies that are in charge of TF conductor procurement. Since all of manufacturing processes have been qualified, JADA started to fabricate superconducting conductors for TF coils.

Journal Articles

Technology development for the manufacture of Nb$$_{3}$$Sn conductors for ITER Toroidal Field coils

Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Japan Atomic Energy Agency is procuring the Nb$$_{3}$$Sn superconductors for Toroidal Field (TF) coils under the ITER project. Because manufacturing amount of Nb$$_{3}$$Sn strands is quite large compared with the past experience and required superconducting performance is higher than that of the model coils which have been fabricated and tested in the ITER-EDA, quality control technique is very important for the manufacture of the strands. Sophisticated control technique is also required for the jacketing, in order to fabricate the conductors with the precise outer diameter and without leakage at welding part. Cu dummy conductor with full length (760 m) has been fabricated successfully and all jacketing technology was confirmed through this fabrication. The fabrication of the Nb$$_{3}$$Sn conductor for TF coils will start in March 2010.

10 (Records 1-10 displayed on this page)
  • 1