Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Search for elements 119 and 120

Khuyagbaatar, J.*; Yakushev, A.*; D$"u$llmann, Ch. E.*; Ackermann, D.*; Andersson, L.-L.*; Asai, Masato; Block, M.*; Boll, R. A.*; Brand, H.*; Cox, D. M.*; et al.

Physical Review C, 102(6), p.064602_1 - 064602_9, 2020/12

 Times Cited Count:30 Percentile:97.96(Physics, Nuclear)

A search for production of the superheavy elements with atomic numbers 119 and 120 was performed in the $$^{50}$$Ti+$$^{249}$$Bk and $$^{50}$$Ti+$$^{249}$$Cf fusion-evaporation reactions, respectively, at the gas-filled recoil separator TASCA. Over four months of irradiation, neither was detected at cross-section sensitivity levels of 65 and 200 fb, respectively. The non-observation of elements 119 and 120 is discussed within the concept of fusion-evaporation reactions including various theoretical predictions on the fission-barrier heights of superheavy nuclei in the region of the island of stability.

Journal Articles

Fusion reaction $$^{48}$$Ca+$$^{249}$$Bk leading to formation of the element Ts (Z=117)

Khuyagbaatar, J.*; Yakushev, A.*; D$"u$llmann, Ch. E.*; Ackermann, D.*; Andersson, L.-L.*; Asai, Masato; Block, M.*; Boll, R. A.*; Brand, H.*; Cox, D. M.*; et al.

Physical Review C, 99(5), p.054306_1 - 054306_16, 2019/05

AA2019-0039.pdf:5.03MB

 Times Cited Count:21 Percentile:90.63(Physics, Nuclear)

We have performed an experiment to synthesize the element 117 (Ts) with the $$^{48}$$Ca+$$^{249}$$Bk fusion reaction. Four $$alpha$$-decay chains attributed to the element 117 were observed. Two of them were long decay chains which can be assigned to the one originating from the $$alpha$$ decay of $$^{294}$$Ts. The other two were short decay chains which are consistent with the one originating from the $$alpha$$ decay of $$^{293}$$Ts. We have compared the present results with the literature data, and found that our present results mostly confirmed the literature data, leading to the firm confirmation of the synthesis of the element 117.

Journal Articles

Complex chemistry with complex compounds

Eichler, R.*; Asai, Masato; Brand, H.*; Chiera, N. M.*; Di Nitto, A.*; Dressler, R.*; D$"u$llmann, Ch. E.*; Even, J.*; Fangli, F.*; Goetz, M.*; et al.

EPJ Web of Conferences, 131, p.07005_1 - 07005_7, 2016/12

 Times Cited Count:2 Percentile:73.04

In recent years gas-phase chemical studies assisted by physical pre-separation allowed for the productions and investigations of fragile single molecular species of superheavy elements. The latest highlight is the formation of very volatile hexacarbonyl compound of element 106, Sg(CO)$$_{6}$$. Following this success, second-generation experiments were performed to measure the first bond dissociation energy between the central metal atom and the surrounding ligand. The method using a tubular decomposition reactor was developed and successfully applied to short-lived Mo(CO)$$_{6}$$, W(CO)$$_{6}$$, and Sg(CO)$$_{6}$$.

Journal Articles

In situ synthesis of volatile carbonyl complexes with short-lived nuclides

Even, J.*; Ackermann, D.*; Asai, Masato; Block, M.*; Brand, H.*; Di Nitto, A.*; D$"u$llmann, Ch. E.*; Eichler, R.*; Fan, F.*; Haba, Hiromitsu*; et al.

Journal of Radioanalytical and Nuclear Chemistry, 303(3), p.2457 - 2466, 2015/03

 Times Cited Count:14 Percentile:77.78(Chemistry, Analytical)

Rapid In situ synthesis of metal carbonyl complexes has been demonstrated using short-lived isotopes produced in nuclear fission and fusion reactions. The short-lived isotopes with high recoil energy directly react with carbon-monoxides and form carbonyl complexes. Only highly volatile complexes were fast transported in a gas stream to counting and chemistry devices. Short-lived Mo, Tc, Ru, Rh, W, Re, Os, and Ir were found to form volatile carbonyl complexes, while no volataile complex of Hf and Ta were detected. This technique has been applied to a chemical investigation of the superheavy element Sg (atomic number 106), and will be applicable to various fields of nuclear science with short-lived transition metal isotopes.

Journal Articles

$$^{48}$$Ca + $$^{249}$$Bk fusion reaction leading to element Z = 117; Long-lived $$alpha$$-decaying $$^{270}$$Db and discovery of $$^{266}$$Lr

Khuyagbaatar, J.*; Yakushev, A.*; D$"u$llmann, Ch. E.*; Ackermann, D.*; Andersson, L.-L.*; Asai, Masato; Block, M.*; Boll, R. A.*; Brand, H.*; Cox, D. M.*; et al.

Physical Review Letters, 112(17), p.172501_1 - 172501_5, 2014/05

 Times Cited Count:201 Percentile:98.44(Physics, Multidisciplinary)

The superheavy element with atomic number 117 was produced in the $$^{48}$$Ca + $$^{249}$$Bk fusion reaction using the gas-filled recoil separator TASCA at GSI in Germany. This result verified the previous result of the discovery of new element 117 reported by Flerov Laboratory of Nuclear Reactions in Russia, which makes certain the synthesis and discovery of element 117 in human history. On the other hand, the last nucleus in the $$alpha$$ decay chain from the element 117 was assigned to be the unknown nucleus $$^{266}$$Lr instead of the previously reported $$^{270}$$Db, and $$^{270}$$Db was found to be the $$alpha$$-decaying nucleus with very long half-life.

Journal Articles

Superheavy element flerovium (element 114) is a volatile metal

Yakushev, A.*; Gates, J. M.*; T$"u$rler, A.*; Sch$"a$del, M.; D$"u$llmann, Ch. E.*; Ackermann, D.*; Andersson, L.-L.*; Block, M.*; Br$"u$chle, W.*; Dvorak, J.*; et al.

Inorganic Chemistry, 53(3), p.1624 - 1629, 2014/02

 Times Cited Count:98 Percentile:98.85(Chemistry, Inorganic & Nuclear)

We report on a gas-solid chromatography study of the adsorption of element 114 (flerovium, Fl) on a Au surface. Fl was produced in the nuclear fusion reaction $$^{244}$$Pu($$^{48}$$Ca, 3-4n)$$^{288,289}$$Fl and was isolated in-flight from the primary $$^{48}$$ beam in a physical recoil separator. The adsorption behavior of Fl, its nuclear $$alpha$$-decay product Cn, their lighter homologues in groups 14 and 12, i.e., Pb and Hg, and the noble gas Rn were studied simultaneously by isothermal gas chromatography and thermochromatography. Two Fl atoms were detected. They adsorbed on a Au surface at room temperature, but not as readily as Pb and Hg. The observed adsorption behavior of Fl points to a higher inertness compared to its nearest homologue in the group, Pb. However, the measured lower limit for the adsorption enthalpy of Fl on a Au surface points to the formation of a metal-metal bond of Fl with Au. Fl is the least reactive element in the group, but still a metal.

Journal Articles

Neutrino-nucleus reaction cross sections for light element synthesis in supernova explosions

Yoshida, Takashi*; Suzuki, Toshio*; Chiba, Satoshi; Kajino, Toshitaka*; Yokomakura, Hidekazu*; Kimura, Keiichi*; Takamura, Akira*; Hartmann, D.*

Astrophysical Journal, 686(1), p.448 - 466, 2008/10

The neutrino-nucleus reaction cross sections of $$^4$$He and $$^{12}$$C are evaluated using new shell model Hamiltonians. Branching ratios of various decay channels are calculated to evaluate the yields of Li, Be, and B produced through the $$nu$$-process in supernova explosions. The new cross sections enhance the yields of $$^{7}$$Li and $$^{11}$$B produced during the supernova explosion of a 16.2 M$$_odot$$ star model compared to our previous study by factors of 1.3 and 1.2, respectively. On the other hand, the yield of $$^{10}$$B decreases by a factor of three. The yields of $$^{6}$$Li, $$^{9}$$Be, and the radioactive nucleus $$^{10}$$Be are found at a level of 10 to 11 M$$_odot$$. The temperature of $$nu mu, tau$$- and $$bar{nu} mu, tau$$-neutrinos inferred from the supernova contribution of $$^{11}$$B in Galactic chemical evolution models is constrained to be in the range 4.5 MeV to 6.4 MeV. The increase in the $$^{7}$$Li and $$^{11}$$B yields due to neutrino oscillations is demonstrated with the new cross sections.

Journal Articles

Neutrino-nucleus reaction cross sections for light element synthesis in supernova explosions

Yoshida, Takashi*; Suzuki, Toshio*; Chiba, Satoshi; Kajino, Toshitaka*; Yokomakura, Hidekazu*; Kimura, Keiichi*; Takamura, Akira*; Hartmann, D. H.*

Astrophysical Journal, 686(1), p.448 - 466, 2008/10

 Times Cited Count:89 Percentile:89.5(Astronomy & Astrophysics)

The neutrino-nucleus reaction cross sections of $$^4$$He and $$^{12}$$C are evaluated using new shell model Hamiltonians. The new cross sections enhance the yields of $$^7$$Li and $$^{11}$$B produced during the supernova explosion of a 16.2 $$M_odot$$ star model compared to the case using the conventional cross sections by about 10%. On the other hand, the yield of $$^{10}$$B decreases by a factor of two. The yields of $$^6$$Li, $$^9$$Be, and the radioactive nucleus $$^{10}$$Be are found at a level of $$sim 10^{-11} M_odot$$. The temperature of $$nu_{mu,tau}$$- and $$bar{nu}_{mu,tau}$$-neutrinos inferred from the supernova contribution of $$^{11}$$B in Galactic chemical evolution models is constrained to be in the range 4.3 MeV to 6.5 MeV. The increase in the $$^7$$Li and $$^{11}$$B yields due to neutrino oscillations is demonstrated with the new cross sections.

Journal Articles

Aqueous chemistry with seaborgium (element 106)

Br$"u$chle, W.*; Andrassy, M.*; Angert, R.*; Eberhardt, K.*; Fricke, B.*; Gregorich, K. E.*; G$"u$nther, R.*; Hartmann, W.*; Heimann, R.*; Hoffman, D. C.*; et al.

1st International Conference on the Chemistry and Physics of the Transactinide Elements; Extended Abstracts, 4 Pages, 1999/00

no abstracts in English

9 (Records 1-9 displayed on this page)
  • 1