Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Managing beryllium in nuclear facility applications

Longhurst, G. R.*; Tsuchiya, Kunihiko; Dorn, C.*; Folkman, S. L.*; Fronk, T. H.*; Ishihara, Masahiro; Kawamura, Hiroshi; Tranter, T. N.*; Rohe, R.*; Uchida, Munenori*; et al.

Nuclear Technology, 176(3), p.430 - 441, 2011/12

 Times Cited Count:12 Percentile:66.82(Nuclear Science & Technology)

Beryllium has important roles in nuclear facilities such as fission reactors and fusion reactors. Its neutron multiplication capability and low atomic weight make it very useful as a reflector in fission reactors. In both applications, the beryllium and the impurities in it become activated by neutrons transmutating to radionuclides, some of which are long-lived and difficult to dispose of. Also, gas production, notably helium and tritium, results in swelling, embrittlement, and cracking, which means that the beryllium must be replaced periodically, especially in fission reactors where dimensional tolerances must be maintained. It has long been known that neutron activation of inherent iron and cobalt in the beryllium results in significant $$^{60}$$Co activity. In 2001, it was discovered that activation of naturally occurring contaminants in the beryllium creates sufficient $$^{14}$$C and $$^{94}$$Nb to render the irradiated beryllium "Greater-Than-Class-C" for disposal in US radioactive waste facilities. In this paper we review the extent of the disposal issue, processes that have been investigated or considered for improving the disposability of irradiated beryllium, and approaches for recycling.

Journal Articles

Problems and future plan on material development of beryllium in materials testing reactors

Tsuchiya, Kunihiko; Longhurst, G.*; Chakin, V.*; Tazhibayeva, I.*; Druyts, F.*; Dorn, C. K.*; Kawamura, Hiroshi

JAEA-Conf 2008-011, p.55 - 58, 2009/01

no abstracts in English

Oral presentation

Material development of beryllium reflector in materials testing reactors

Tsuchiya, Kunihiko; Longhurst, G.*; Chakin, V.*; Tazhibayeva, I.*; Druyts, F.*; Dorn, C. K.*; Kawamura, Hiroshi

no journal, , 

Beryllium has been utilized as a moderator and/or reflector in a number of material testing reactors. In fact, the nuclear properties of beryllium are its low atomic number, low atomic weight, low parasitic capture cross section for thermal neutrons, readiness to part with one of its own neutrons (n, 2n), and good neutron elastic scattering characteristics. Various problems of beryllium utilization are introduced for nuclear reactors and two points are proposed for the solution of irradiated beryllium wastes. Thus, it will be necessary to consider fundamental changes to the frame design, starting with the choice of beryllium material grade. Additionally, irradiation tests are planned for the design modification of beryllium materials. Beryllium material grades are selected for material modification and irradiation tests have been discussed. New measurement procedures in PIEs are also proposed for evaluation of lifetime extension. In this presentation, status and future plan of beryllium reflector development are introduced.

3 (Records 1-3 displayed on this page)
  • 1