Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Fabrication of SiC fiber reinforced SiC composite by chemical vapor infiltration for excellent mechanical properties

Igawa, Naoki; Taguchi, Tomitsugu; Nozawa, Takashi*; Snead, L. L.*; Hinoki, Tatsuya*; McLaughlin, J. C.*; Kato, Yutai*; Jitsukawa, Shiro; Koyama, Akira*

Journal of Physics and Chemistry of Solids, 66(2-4), p.551 - 554, 2005/02

 Times Cited Count:47 Percentile:82.48(Chemistry, Multidisciplinary)

Silicon carbide is an important engineering ceramic because of its high strength and stability at high temperature and low induced radioactivity after neutron irradiation. Though monolithic SiC is brittle and low toughness, SiC fiber reinforced SiC matrix composites significantly improve these properties and therefore are attractive candidate materials for fusion reactor structural applications. Recently, stoichiometric SiC fibers with superior mechanical properties have been produced. We carried out the optimization of interface and composite fabrication using the chemical vapor infiltration, which is the one of the best techniques to fabricate the SiC composite. The composite with higher density and homogeneous matrix was obtained by the optimization of materials and carrier gas flow rate. The porosity was decreased with increasing the fiber volume fraction. We adopted the carbon or carbon/SiC interface between fiber and matrix and we found that the dependence of interface thickness on the tensile properties was small in the interface thickness from 50 to 300 nm.

Journal Articles

Optimizing the fabrication process for superior mechanical properties in the FCVI SiC matrix/stoichiometric SiC fiber composite system

Igawa, Naoki; Taguchi, Tomitsugu; Snead, L. L.*; Kato, Yudai*; Jitsukawa, Shiro; Koyama, Akira*; McLaughlin, J. C.*

Journal of Nuclear Materials, 307-311(Part2), p.1205 - 1209, 2002/12

 Times Cited Count:16 Percentile:69.83(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Optimizing the fabrication process for excellent mechanical properties in stoichiometric SiC fiber/FCVI SiC matrix composites

Taguchi, Tomitsugu; Igawa, Naoki; Jitsukawa, Shiro; Nozawa, Takashi*; Kato, Yudai*; Koyama, Akira*; Snead, L. L.*; McLaughlin, J. C.*

Advanced SiC/SiC Ceramic Composites: Developments and Applications in Energy Systems; Ceramic Transactions Vol. 144, p.69 - 76, 2002/00

Process optimization for Forced-thermal gradient Chemical Vapor Infiltration (FCVI) fabrication of 75 mm diameter size SiC composites with advanced SiC fibers; Hi-Nicalon Type S and Tyranno SA, was carried out. The SiC/SiC composites fabricated by FCVI exhibited significant reduction in porosity (15.1%) and more uniform pore distribution by decreasing the MTS and H$$_{2}$$ gases flow rates in the latter part of the FCVI process. The tensile strength of the both composites using Hi-Nicalon Type S or Tyranno SA fibers was slightly increased with increased thickness of carbon interphase in the range of 75-300 nm. In order to perform the comparative testing required to directly compare the thermomechanical property changes following neutron irradiation, larger composites with uniform microstructural property are required. From the results of process optimization for fabrication of 75 mm diameter size FCVI SiC/SiC composites, the definitive purpose in this study is the fabrication of the 300 mm diameter size SiC/SiC composite with the uniform microstructural properties.

3 (Records 1-3 displayed on this page)
  • 1