Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Quasifree neutron knockout reaction reveals a small $$s$$-Orbital component in the Borromean nucleus $$^{17}$$B

Yang, Z. H.*; Kubota, Yuki*; Corsi, A.*; Yoshida, Kazuki; Sun, X.-X.*; Li, J. G.*; Kimura, Masaaki*; Michel, N.*; Ogata, Kazuyuki*; Yuan, C. X.*; et al.

Physical Review Letters, 126(8), p.082501_1 - 082501_8, 2021/02

AA2020-0819.pdf:1.29MB

 Times Cited Count:31 Percentile:96.65(Physics, Multidisciplinary)

A quasifree ($$p$$,$$pn$$) experiment was performed to study the structure of the Borromean nucleus $$^{17}$$B, which had long been considered to have a neutron halo. By analyzing the momentum distributions and exclusive cross sections, we obtained the spectroscopic factors for $$1s_{1/2}$$ and $$0d_{5/2}$$ orbitals, and a surprisingly small percentage of 9(2)% was determined for $$1s_{1/2}$$. Our finding of such a small $$1s_{1/2}$$ component and the halo features reported in prior experiments can be explained by the deformed relativistic Hartree-Bogoliubov theory in continuum, revealing a definite but not dominant neutron halo in $$^{17}$$B. The present work gives the smallest $$s$$- or $$p$$-orbital component among known nuclei exhibiting halo features and implies that the dominant occupation of $$s$$ or $$p$$ orbitals is not a prerequisite for the occurrence of a neutron halo.

Journal Articles

JT-60SA superconducting magnet system

Koide, Yoshihiko; Yoshida, Kiyoshi; Wanner, M.*; Barabaschi, P.*; Cucchiaro, A.*; Davis, S.*; Decool, P.*; Di Pietro, E.*; Disset, G.*; Genini, L.*; et al.

Nuclear Fusion, 55(8), p.086001_1 - 086001_7, 2015/08

 Times Cited Count:30 Percentile:83.62(Physics, Fluids & Plasmas)

The most distinctive feature of the superconducting magnet system for JT-60SA is the optimized coil structure in terms of the space utilization as well as the highly accurate coil manufacturing, thus meeting the requirements for the steady-state tokamak research: A conceptually new outer inter-coil structure separated from the casing is introduced to the toroidal field coils to realize their slender shape, allowing large-bore diagnostic ports for detailed plasma measurements. A method to minimize the manufacturing error of the equilibrium-field coils has been established, aiming at the precise plasma shape/position control. A compact butt-joint has been successfully developed for the Central Solenoid, which allows an optimized utilization of the limited space for the Central Solenoid to extend the duration of the plasma pulse.

Journal Articles

Mass production of superconducting magnet components for JT-60SA

Yoshida, Kiyoshi; Murakami, Haruyuki; Kizu, Kaname; Tsuchiya, Katsuhiko; Kamiya, Koji; Koide, Yoshihiko; Phillips, G.*; Zani, L.*; Wanner, M.*; Barabaschi, P.*; et al.

IEEE Transactions on Applied Superconductivity, 24(3), p.4200806_1 - 4200806_6, 2014/06

 Times Cited Count:13 Percentile:56.61(Engineering, Electrical & Electronic)

The upgrade of the JT-60U magnet system to the superconducting coils (JT-60SA) is progressing as a satellite facility for ITER by Japan and EU in the BA agreement. All components of magnet system are now under manufacturing in mass production. The first superconducting EF conductor was manufactured in 2010 in Japan. First superconducting coil EF4 was manufactured in 2012. Other EF5 and EF6 coils shall be manufactured by 2013 to install temporally on the cryostat base before the assembly of the plasma vacuum vessel. CS model coil is fabricated to qualify all manufacturing process of Nb$$_{3}$$Sn conductor. The first TF conductor was manufactured in 2012. The cryogenic requirements for JT-60SA are about 9 kW at 4.5K. Each coil is connected through an in-cryostat feeder to the current leads located outside the cryostat in the CTB. A total of 26 HTS current leads are installed in the CTB. The manufacturing of the magnet system is in progress to provide components to assembly the Tokamak machine.

Journal Articles

The Manufacturing of the superconducting magnet system for the JT-60SA

Yoshida, Kiyoshi; Kizu, Kaname; Tsuchiya, Katsuhiko; Murakami, Haruyuki; Kamiya, Koji; Payrot, M.*; Zani, L.*; Wanner, M.*; Barabaschi, P.*; Heller, R.*; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4200304_1 - 4200304_4, 2012/06

 Times Cited Count:22 Percentile:70.63(Engineering, Electrical & Electronic)

The JT-60SA is progressing as a "satellite" facility for ITER in the Broader Approach agreement. The fabrications of the conductor for CS and EF coils were started in 2008. The first superconducting conductor of EF4 coil was manufactured at March 2010. The manufacturing tools for EF coils are design and prepared from 2009. The double pancake using the superconductor has been started at 2011. The TF coil case encloses the winding pack and is the main structural component of the magnet system. The interface between TF case and CS and EF coil were designed. The conductor for TF coils fabrication has been started. The cryogenic system is equivalent to be about 9 kW refrigeration at 4.5 K. Each coil is electrically connected through the in-cryostat feeder and the coil terminal boxes. The 26 current leads using high temperature superconductor. The manufacturing of superconducting magnet for JT-60SA are started by solving its cost and technology.

Journal Articles

Status of JT-60SA tokamak under the EU-JA broader approach agreement

Matsukawa, Makoto; Kikuchi, Mitsuru; Fujii, Tsuneyuki; Fujita, Takaaki; Hayashi, Takao; Higashijima, Satoru; Hosogane, Nobuyuki; Ikeda, Yoshitaka; Ide, Shunsuke; Ishida, Shinichi; et al.

Fusion Engineering and Design, 83(7-9), p.795 - 803, 2008/12

 Times Cited Count:17 Percentile:72.99(Nuclear Science & Technology)

no abstracts in English

Journal Articles

The JT-60SA cryoplant current design status

Henry, D.*; Michel, F.*; Roussel, P.*; Reynaud, P.*; Journeaux, J. Y.*; Mar$'e$chal, J. L.*; Balaguer, D.*; Roux, C.*; Matsukawa, Makoto; Yoshida, Kiyoshi

AIP Conference Proceedings 985, p.445 - 452, 2008/03

 Times Cited Count:0 Percentile:0.07

In the framework of the ITER Broader Approach, CEA is carrying out the procurement of the Cryogenic System to the JA-EU Satellite Tokamak JT-60SA, which should be operated in Japan at JAEA, Naka in 2014. According to the Conceptual Design Report, JT-60SA is to operate for periods of at least 6 months per year, with major shutdown periods in between for maintenance and further installation upgrades. For this operation scenario, the cryoplant and the cryodistribution have to cope with different heat loads which depend on the different JT-60SA operating states. The cryoplant consists of one 4.5 K refrigerator and one 80 K helium loop, each pre-cooled by LN2. These cryogenic subsystems have to operate simultaneously in order to remove the heat loads from the superconducting magnets, 80 K shields and the divertor cryopumps. The first part of this study is based on the Process Flow Diagram (PFD) and presents the current design status of the JT-60SA cryogenic system. The second part is dedicated to the analysis of the cryoplant normal operation modes including the regeneration mode of the divertor cryopumps.

Oral presentation

Specification of the helium refrigerator for JT-60SA

Kamiya, Koji; Onishi, Yoshihiro; Koide, Yoshihiko; Yoshida, Kiyoshi; Michel, F.*

no journal, , 

A final specification of the JT-60SA helium refrigerator was agreed between EU and Japan on September 2012, and the procurement arrangement was signed in November 2012. The JT-60SA helium refrigerator consists of the cold box, auxiliary cold box, helium compressors, and helium gas storage tanks. JT-60SA helium refrigerator cools superconducting coils, structures, high temperature superconducting current leads, thermal shield, and cryopanel. A cooling power of the refrigerator is approximately 9 kW at 4.5 K. This study reports detailed specification and schedule of the JT-60SA helium refrigerator.

7 (Records 1-7 displayed on this page)
  • 1