Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 41

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Assessment of operational space for long-pulse scenarios in ITER

Polevoi, A. R.*; Loarte, A.*; Hayashi, Nobuhiko; Kim, H. S.*; Kim, S. H.*; Koechl, F.*; Kukushkin, A. S.*; Leonov, V. M.*; Medvedev, S. Yu.*; Murakami, Masakatsu*; et al.

Nuclear Fusion, 55(6), p.063019_1 - 063019_8, 2015/05

 Times Cited Count:31 Percentile:85.09(Physics, Fluids & Plasmas)

Journal Articles

Development of advanced inductive scenarios for ITER

Luce, T. C.*; Challis, C. D.*; Ide, Shunsuke; Joffrin, E.*; Kamada, Yutaka; Politzer, P. A.*; Schweinzer, J.*; Sips, A. C. C.*; Stober, J.*; Giruzzi, G.*; et al.

Nuclear Fusion, 54(1), p.013015_1 - 013015_15, 2013/12

 Times Cited Count:29 Percentile:83.75(Physics, Fluids & Plasmas)

Journal Articles

Optimization of ITER operational space for long-pulse scenarios

Polevoi, A. R.*; Hayashi, Nobuhiko; Kim, H. S.*; Kim, S. H.*; Koechl, F.*; Kukushkin, A. S.*; Leonov, V. M.*; Loarte, A.*; Medvedev, S. Yu.*; Murakami, Masakatsu*; et al.

Europhysics Conference Abstracts (Internet), 37D, p.P2.135_1 - P2.135_4, 2013/07

Journal Articles

Current ramps in tokamaks; From present experiments to ITER scenarios

Imbeaux, F.*; Citrin, J.*; Hobirk, J.*; Hogeweij, G. M. D.*; K$"o$chl, F.*; Leonov, V. M.*; Miyamoto, Seiji; Nakamura, Yukiharu*; Parail, V.*; Pereverzev, G. V.*; et al.

Nuclear Fusion, 51(8), p.083026_1 - 083026_11, 2011/08

 Times Cited Count:35 Percentile:80.68(Physics, Fluids & Plasmas)

Journal Articles

Integrated modeling of steady-state scenarios and heating and current drive mixes for ITER

Murakami, Masanori*; Park, J. M.*; Giruzzi, G.*; Garcia, J.*; Bonoli, P.*; Budny, R. V.*; Doyle, E. J.*; Fukuyama, Atsushi*; Hayashi, Nobuhiko; Honda, Mitsuru; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Journal Articles

Current ramps in tokamaks; From present experiments to ITER scenarios

Imbeaux, F.*; Basiuk, V.*; Budny, R.*; Casper, T.*; Citrin, J.*; Fereira, J.*; Fukuyama, Atsushi*; Garcia, J.*; Gribov, Y. V.*; Hayashi, Nobuhiko; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Journal Articles

Current ramps in tokamaks; From present experiments to ITER scenarios

Imbeaux, F.*; Basiuk, V.*; Budny, R.*; Casper, T.*; Citrin, J.*; Fereira, J.*; Fukuyama, Atsushi*; Garcia, J.*; Gribov, Y. V.*; Hayashi, Nobuhiko; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2010/10

In order to prepare adequate current ramp-up and ramp-down scenarios for ITER, present experiments from several tokamaks have been analyzed by means of integrated modeling in view of determining relevant heat transport models for these operation phases. The results of these studies are presented and projections to ITER current ramp-up and ramp-down scenarios are done, focusing on the baseline inductive scenario (main heating plateau current of 15 MA). Various transport models have been tested by means of integrated modeling against experimental data from ASDEX Upgrade, C-Mod, DIII-D, JET and Tore Supra, including both Ohmic plasmas and discharges with additional heating/current drive. With using the most successful models, projections to the ITER current ramp-up and ramp-down phases are carried out. Though significant differences between models appear on the electron temperature prediction, the final q-profiles reached in the simulation are rather close.

Journal Articles

The 2008 public release of the international multi-tokamak confinement profile database

Roach, C. M.*; Walters, M.*; Budny, R. V.*; Imbeaux, F.*; Fredian, T. W.*; Greenwald, M.*; Stillerman, J. A.*; Alexander, D. A.*; Carlsson, J.*; Cary, J. R.*; et al.

Nuclear Fusion, 48(12), p.125001_1 - 125001_19, 2008/12

 Times Cited Count:35 Percentile:28.57(Physics, Fluids & Plasmas)

This paper documents the public release PR08 of the International Tokamak Physics Activity profile database, which should be of particular interest to the magnetic confinement fusion community. Data from a wide variety of interesting discharges from many of the world's leading tokamak experiments are now made available in PR08, which also includes predictive simulations of an initial set of operating scenarios for ITER. In this paper we describe the discharges that have been included and the tools that are available to the reader who is interested in accessing and working with the data.

Journal Articles

Integrated modeling of steady-state scenarios for ITER; Physics and computational challenges

Giruzzi, G.*; Park, J. M.*; Murakami, M.*; Kessel, C. E.*; Polevoi, A.*; Sips, A. C. C.*; Artaud, J. F.*; Basiuk, V.*; Bonoli, P.*; Budny, R. V.*; et al.

Proceedings of 22nd IAEA Fusion Energy Conference (FEC 2008) (CD-ROM), 8 Pages, 2008/10

Journal Articles

Progress in the ITER physics basis, 1; Overview and summary

Shimada, Michiya; Campbell, D. J.*; Mukhovatov, V.*; Fujiwara, Masami*; Kirneva, N.*; Lackner, K.*; Nagami, Masayuki; Pustovitov, V. D.*; Uckan, N.*; Wesley, J.*; et al.

Nuclear Fusion, 47(6), p.S1 - S17, 2007/06

 Times Cited Count:717 Percentile:99.93(Physics, Fluids & Plasmas)

The Progress in the ITER Physics Basis document is an update of the ITER Physics Basis (IPB), which was published in 1999. The IPB provided methodologies for projecting the performance of burning plasmas, developed largely through coordinated experimental, modeling and theoretical activities carried out on today's tokamaks (ITER Physics R&D). In the IPB, projections for ITER (1998 Design) were also presented. The IPB also pointed out some outstanding issues. These issues have been addressed by the International Tokamak Physics Activities (ITPA), which were initiated by the European Union, Japan, Russia and the U.S.A.. The new methodologies of projection and control developed through the ITPA are applied to ITER, which was redesigned under revised technical objectives, but will nonetheless meet the programmatic objective of providing an integrated demonstration of the scientific and technological feasibility of fusion energy.

Journal Articles

Progress in the ITER physics basis, 2; Plasma confinement and transport

Doyle, E. J.*; Houlberg, W. A.*; Kamada, Yutaka; Mukhovatov, V.*; Osborne, T. H.*; Polevoi, A.*; Bateman, G.*; Connor, J. W.*; Cordey, J. G.*; Fujita, Takaaki; et al.

Nuclear Fusion, 47(6), p.S18 - S127, 2007/06

no abstracts in English

Journal Articles

Progress in the ITER physics basis, 6; Steady state operation

Gormezano, C.*; Sips, A. C. C.*; Luce, T. C.*; Ide, Shunsuke; Becoulet, A.*; Litaudon, X.*; Isayama, Akihiko; Hobirk, J.*; Wade, M. R.*; Oikawa, Toshihiro; et al.

Nuclear Fusion, 47(6), p.S285 - S336, 2007/06

 Times Cited Count:302 Percentile:77.19(Physics, Fluids & Plasmas)

This paper reviews recent world-wide progress in physics research towards International Thermonuclear Reactor (ITER). This chaper descrives on steady state operation with emphasis on: integrated scenarios, review of presently developed experimental scenarios, actuators for steady state operation, specific control issues to steady state operation, simulation of ITER steady-state and hybrid scenarios.

Journal Articles

Study on current drive capability of lower hybrid waves and neutral beam in an ITER steady state scenario

Oikawa, Toshihiro; Shimada, Michiya; Polevoi, A. R.*; Naito, Osamu; Bonoli, P. T.*; Hayashi, Nobuhiko; Kessel, C. E.*; Ozeki, Takahisa

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 7 Pages, 2007/03

The current drive capability of lower hybrid waves is assessed for an ITER steady state scenario using a relativistic, one-dimensional Fokker-Planck code and a toroidal ray tracing code. The present LH launcher design provides a current drive efficiency of 1.8$$times$$10$$^{19}$$AW$$^{-1}$$m$$^{-2}$$ and an off-axis profile of the driven current that is fovarable for a reversed magnetic shear configuration. Possible optimizations in the LH power spectrum are investigated. Neutral beam current drive (NBCD) is investigated with theoretical codes employing different approaches. An NBCD code employing the bounce-averaged Fokker-Planck equation to include orbit effects in a toroidal system shows a good agreement with an orbit following Monte-Carlo code.

Journal Articles

Edge pedestal physics and its implications for ITER

Kamada, Yutaka; Leonard, A. W.*; Bateman, G.*; Becoulet, M.*; Chang, C. S.*; Eich, T.*; Evans, T. E.*; Groebner, R. J.*; Guzdar, P. N.*; Horton, L. D.*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03

no abstracts in English

Journal Articles

Impacts of particle fuelling on confinement and pedestal parameter in JT-60U

Takenaga, Hidenobu; Oyama, Naoyuki; Urano, Hajime; Kamiya, Kensaku; Miyo, Yasuhiko; Nishiyama, Tomokazu; Sasajima, Tadayuki; Masaki, Kei; Hiratsuka, Hajime; Ichige, Hisashi; et al.

Europhysics Conference Abstracts (CD-ROM), 30I, 4 Pages, 2006/00

no abstracts in English

Journal Articles

Requirements for pellet injection in ITER scenarios with enhanced particle confinement

Polevoi, A. R.*; Shimada, Michiya; Sugihara, Masayoshi; Igitkhanov, Y. L.*; Mukhovatov, V.*; Kukushkin, A. S.*; Medvedev, S. Y.*; Zvonkov, A. V.*; Ivanov, A. A.*

Nuclear Fusion, 45(11), p.1451 - 1456, 2005/11

 Times Cited Count:33 Percentile:70.46(Physics, Fluids & Plasmas)

Requirements for pellet injection parameters for plasma fuelling are assessed for ITER scenarios with enhanced particle confinement. A pellet injection throughput of 100 Pam$$^{3}$$/s would be sufficient. The assessment is based on the integrated transport simulations including models of pedestal transport, reduction of helium transport and boundary conditions compatible with SOL/divertor simulations. The requirements for pellet injection for the inductive H-mode scenario (HH98(y,2) = 1) are reconsidered taking account of a possible reduction of the particle loss obtained in some experiments at low collisionalities. The assessment of fuelling requirements is carried out for the hybrid and steady state scenarios with enhanced confinement with HH98(y,2) $$>$$ 1. A robustness of plasma performance to the variation of particle transport is demonstrated. A new type of steady state (SS) scenario is considered with neutral beam current drive (NBCD) and electron cyclotron current drive (ECCD) instead of lower hybrid current drive (LHCD).

Journal Articles

Overview of goals and performance of ITER and strategy for plasma-wall interaction investigation

Shimada, Michiya; Costley, A. E.*; Federici, G.*; Ioki, Kimihiro*; Kukushkin, A. S.*; Mukhovatov, V.*; Polevoi, A. R.*; Sugihara, Masayoshi

Journal of Nuclear Materials, 337-339, p.808 - 815, 2005/03

 Times Cited Count:63 Percentile:96.38(Materials Science, Multidisciplinary)

ITER is an experimental fusion reactor for investigation and demonstration of burning plasmas, characterised of its heating dominated by alpha-particle heating. ITER is a major step from present devices and an indispensable step for fusion reactor development. ITER's success largely depends on the control of plasma-wall interactions(PWI), with power and particle fluxes and time scales one or two orders of magnitude larger than in present devices. The strategy for control of PWI includes the semi-closed divertor, strong fuelling and pumping, disruption and ELM control, replaceable plasma-facing materials and stepwise operation.

Journal Articles

Progress in physics basis and its impact on ITER

Shimada, Michiya; Campbell, D.*; Stambaugh, R.*; Polevoi, A. R.*; Mukhovatov, V.*; Asakura, Nobuyuki; Costley, A. E.*; Donn$'e$, A. J. H.*; Doyle, E. J.*; Federici, G.*; et al.

Proceedings of 20th IAEA Fusion Energy Conference (FEC 2004) (CD-ROM), 8 Pages, 2004/11

This paper summarises recent progress in the physics basis and its impact on the expected performance of ITER. Significant progress has been made in many outstanding issues and in the development of hybrid and steady state operation scenarios, leading to increased confidence of achieving ITER's goals. Experiments show that tailoring the current profile can improve confinement over the standard H-mode and allow an increase in beta up to the no-wall limit at safety factors $$sim$$ 4. Extrapolation to ITER suggests that at the reduced plasma current of $$sim$$ 12MA, high Q $$>$$ 10 and long pulse ($$>$$1000 s) operation is possible with benign ELMs. Analysis of disruption scenarios has been performed based on guidelines on current quench rates and halo currents, derived from the experimental database. With conservative assumptions, estimated electromagnetic forces on the in-vessel components are below the design target values, confirming the robustness of the ITER design against disruption forces.

Journal Articles

Performance of ITER as a burning plasma experiment

Shimada, Michiya; Mukhovatov, V.*; Federici, G.*; Gribov, Y.*; Kukushkin, A.*; Murakami, Yoshiki*; Polevoi, A. R.*; Pustovitov, V. D.*; Sengoku, Seio; Sugihara, Masayoshi

Nuclear Fusion, 44(2), p.350 - 356, 2004/02

Recent performance analysis has improved confidence in achieving Q $$>$$ 10 in inductive operation in ITER. Performance analysis based on empirical scaling shows the feasibility of achieving Q $$>$$ 10 in inductive operation with a sufficient margin. Theory-based core modeling indicates the need of high pedestal temperature (2-4 keV) to achieve Q $$>$$ 10, which is in the range of projection with pedestal scaling. The heat load of type-I ELM could be made tolerable by high density operation and further tilting the target plate (if necessary). Pellet injection from High-Field Side would be useful in enhancing Q and reducing ELM heat load. Steady state operation scenarios have been developed with modest requirement on confinement improvement and beta (HH98(y,2) $$>$$ 1.3 and betaN $$>$$ 2.6). Stabilisation of RWM, required in such regimes, is feasible with the present saddle coils and power supplies with double-wall structure taken into account.

Journal Articles

Performance of ITER as a burning plasma experiment

Shimada, Michiya; Mukhovatov, V.*; Federici, G.*; Gribov, Y.*; Kukushkin, A. S.*; Murakami, Yoshiki*; Polevoi, A. R.*; Pustovitov, V. D.*; Sengoku, Seio; Sugihara, Masayoshi

Nuclear Fusion, 44(2), p.350 - 356, 2004/02

 Times Cited Count:39 Percentile:75.72(Physics, Fluids & Plasmas)

Performance analysis based on empirical scaling shows the feasibility of achieving Q $$geq$$ 10 in inductive operation. Analysis has also elucidated a possibility that ITER can potentially demonstrate Q $$sim$$ 50, enabling studies of self-heated plasmas. Theory-based core modeling indicates the need of high pedestal temperature (3.2 - 5.3 keV) to achieve Q $$geq$$10, which is in the range of projection with presently available pedestal scalings. Pellet injection from high-field side would be useful in enhancing Q and reducing ELM heat load in high plasma current operation. If the ELM heat load is not acceptable, it could be made tolerable by further tilting the target plate. Steady state operation scenarios at Q = 5 have been developed with modest requirement on confinement improvement and beta (HH98(y,2) $$geq$$ 1.3 and betaN $$geq$$ 2.6). Stabilisation of RWM, required in such regimes, is feasible with the present saddle coils and power supplies with double-wall structure taken into account.

41 (Records 1-20 displayed on this page)