Refine your search:     
Report No.
 - 
Search Results: Records 1-12 displayed on this page of 12
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Soft, environmentally degradable microfluidic devices for measurement of sweat rate and total sweat loss and for colorimetric analysis of sweat biomarkers

Liu, S.*; Yang, D. S.*; Wang, S.*; Luan, H.*; Sekine, Yurina; Model, J. B.*; Aranyosi, A. J.*; Ghaffari, R.*; Rogers, J. A.*

EcoMat (Internet), 5(1), p.e12270_1 - e12270_18, 2023/01

 Times Cited Count:7 Percentile:91.85(Chemistry, Physical)

Advanced capabilities in noninvasive, in situ monitoring of sweat serve as the basis for obtaining real-time insights into human physiological state, health, and performance. Although recently reported microfluidic systems support powerful functions, most are designed as single-use disposables. Here, we introduce materials and molding techniques that bypass these concerns through biodegradable microfluidic systems with a full range of features. The key components fully degrade through the enzymatic action of microorganisms in natural soil environments. Detailed characterization of the device reveal a set of essential performance parameters that are comparable to, or even better than, those of non-degradable counterparts. Human subject studies illustrate the ability of these devices to acquire accurate measurements of sweat loss, sweat rate, pH, and chloride concentration.

Journal Articles

Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities

Kim, S.*; Lee, B.*; Reeder, J. T.*; Seo, S. H.*; Lee, S.-U.*; Hourlier-Fargette, A.*; Shin, J.*; Sekine, Yurina; Jeong, H.*; Oh, Y. S.*; et al.

Proceedings of the National Academy of Sciences of the United States of America, 117(45), p.27906 - 27915, 2020/11

 Times Cited Count:62 Percentile:93.03(Multidisciplinary Sciences)

In this study, we present a wireless, battery-free, skin-interfaced microfluidic system that combines lateral flow immunoassay for sweat cortisol assay, fluorometric imaging of glucose and ascorbic acid (vitamin C) assays, and digital tracking of sweat rate using electrodes that measure skin galvanic response. Systematic benchtop testing and on-body field studies on human subjects exercising in a gym environment highlight the key multifunctional features of this platform in tracking the biochemical correlates of physical stress.

Journal Articles

Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system

Zhang, Y.*; Guo, H.*; Kim, S. B.*; Wu, Y.*; Ostojich, D.*; Park, S. H.*; Wang, X.*; Weng, Z.*; Li, R.*; Bandodkar, A. J.*; et al.

Lab on a Chip, 19(9), p.1545 - 1555, 2019/05

 Times Cited Count:119 Percentile:99.63(Biochemical Research Methods)

This paper introduces two important advances in recently reported classes of soft, skin-interfaced microfluidic systems for sweat capture and analysis: (1) a simple, broadly applicable means for collection of sweat that bypasses requirements for physical/mental exertion or pharmacological stimulation and (2) a set of enzymatic chemistries and colorimetric readout approaches for determining the concentrations of creatinine and urea in sweat, across physiologically relevant ranges. The results allow for routine, non-pharmacological capture of sweat across patient populations, such as infants and the elderly, that cannot be expected to sweat through exercise, and they create potential opportunities in the use of sweat for kidney disease screening/monitoring.

Journal Articles

Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat

Bandodkar, A. J.*; Gutruf, P.*; Choi, J.*; Lee, K.-H.*; Sekine, Yurina; Reeder, J. T.*; Jeang, W. J.*; Aranyosi, A. J.*; Lee, S. P.*; Model, J. B.*; et al.

Science Advances (Internet), 5(1), p.eaav3294_1 - eaav3294_15, 2019/01

 Times Cited Count:386 Percentile:99.88(Multidisciplinary Sciences)

Interest in advanced wearable technologies increasingly extends beyond systems for biophysical measurements to those that enable continuous, non-invasive monitoring of biochemical markers in biofluids. Here, we introduce battery-free, wireless microelectronic platforms that perform sensing via schemes inspired by the operation of biofuel cells. Combining these systems in a magnetically releasable manner with chrono-sampling microfluidic networks that incorporate assays based on colorimetric sensing yields thin, flexible, lightweight, skin-interfaced technologies with broad functionality in sweat analysis. A demonstration device allows simultaneous monitoring of sweat rate/loss, along with quantitative measurements of pH and of lactate, glucose and chloride concentrations using biofuel cell and colorimetric approaches.

Journal Articles

Soft, skin-interfaced microfluidic systems with wireless, battery-free electronics for digital, real-time tracking of sweat loss and electrolyte composition

Kim, S. B.*; Lee, K.-H.*; Raj, M. S.*; Reeder, J. T.*; Koo, J.*; Hourlier-Fargette, A.*; Bandodkar, A. J.*; Won, S. M.*; Sekine, Yurina; Choi, J.*; et al.

Small, 14(45), p.1802876_1 - 1802876_9, 2018/11

 Times Cited Count:74 Percentile:94.04(Chemistry, Multidisciplinary)

Excretion of sweat from eccrine glands is a dynamic physiological process that varies with body position, activity level, and health status. Information content embodied in sweat rate and chemistry can be used to assess health status and athletic performance. This paper presents a thin, miniaturized, skin-interfaced microfluidic technology that includes a reusable, battery-free electronics module for measuring sweat conductivity and rate in real-time using wireless power from and data communication with capabilities in near field communications (NFC). Systematic studies of these combined microfluidic/electronic systems, accurate correlations of measurements performed with them to those of laboratory standard instrumentation, and field tests on human subjects establish the key operational features and their utility in sweat analytics.

Journal Articles

A Fluorometric skin-interfaced microfluidic device and smartphone imaging module for ${{it in situ}}$ quantitative analysis of sweat chemistry

Sekine, Yurina; Kim, S. B.*; Zhang, Y.*; Bandodkar, A. J.*; Xu, S.*; Choi, J.*; Irie, Masahiro*; Ray, T. R.*; Kohli, P.*; Kozai, Naofumi; et al.

Lab on a Chip, 18(15), p.2178 - 2186, 2018/08

The rich composition of solutes and metabolites in sweat and its relative ease of collection upon excretion from skin pores make this class of biofluid an attractive candidate for point of care analysis. Here, we present a complementary approach that exploits fluorometric sensing modalities integrated into a soft, skin-interfaced microfluidic system which, when paired with a simple smartphone-based imaging module, allows for in-situ measurement of important biomarkers in sweat. A network array of microchannels and a collection of microreservoirs pre-filled with fluorescent probes that selectively react with target analytes in sweat (e.g. probes), enable quantitative, rapid analysis. Field studies on human subjects demonstrate the ability to measure the concentrations of chloride, sodium and zinc in sweat, with accuracy that matches that of conventional laboratory techniques.

Journal Articles

Super-absorbent polymer valves and colorimetric chemistries for time-sequenced discrete sampling and chloride analysis of sweat via skin-mounted soft microfluidics

Kim, S. B.*; Zhang, Y.*; Won, S. M.*; Bandodkar, A. J.*; Sekine, Yurina; Xue, Y.*; Koo, J.*; Harshman, S. W.*; Martin, J. A.*; Park, J. M.*; et al.

Small, 14(12), p.1703334_1 - 1703334_11, 2018/03

 Times Cited Count:86 Percentile:95.48(Chemistry, Multidisciplinary)

Journal Articles

Stability and synthesis of superheavy elements; Fighting the battle against fission - Example of $$^{254}$$No

Lopez-Martens, A.*; Henning, G.*; Khoo, T. L.*; Seweryniak, D.*; Alcorta, M.*; Asai, Masato; Back, B. B.*; Bertone, P. F.*; Boilley, D.*; Carpenter, M. P.*; et al.

EPJ Web of Conferences, 131, p.03001_1 - 03001_6, 2016/12

 Times Cited Count:1 Percentile:44

Fission barrier height and its angular-momentum dependence have been measured for the first time in the nucleus with the atomic number greater than 100. The entry distribution method, which can determine the excitation energy at which fission starts to dominate the decay process, was applied to $$^{254}$$No. The fission barrier of $$^{254}$$No was found to be 6.6 MeV at zero spin, indicating that the $$^{254}$$No is strongly stabilized by the nuclear shell effects.

Journal Articles

Identification of deformed intruder states in semi-magic $$^{70}$$Ni

Chiara, C. J.*; Weisshaar, D.*; Janssens, R. V. F.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Harker, J. L.*; Walters, W. B.*; Recchia, F.*; Albers, M.*; Alcorta, M.*; et al.

Physical Review C, 91(4), p.044309_1 - 044309_10, 2015/04

 Times Cited Count:36 Percentile:91.68(Physics, Nuclear)

The neutron-rich isotope $$^{70}$$Ni was produced by multi-nucleon transfer reactions of $$^{70}$$Zn in the Argonne National Laboratory, and an in-beam $$gamma$$-ray experiment were performed using the GRETINA array. The $$2^+_2$$ and $$4^+_2$$ levels of $$^{70}$$Ni were observed for the first time. Those levels are regarded as large deformed states associated with proton excitation from the $$f_{7/2}$$ orbit because they cannot be reproduced by a shell-model calculation assuming a small valence space without $$f_{7/2}$$. A theoretical analysis based on the Monte Carlo shell model published in 2014 indicates that those levels corresponds to a prolate deformed band. The present result demonstrates the occurrence of shape coexistence in neutron-rich Ni isotopes other than a known case of $$^{68}$$Ni, and confirms the predictive power of the Monte Carlo shell-model calculation.

Journal Articles

Fission barrier of superheavy nuclei and persistence of shell effects at high spin; Cases of $$^{254}$$No and $$^{220}$$Th

Henning, G.*; Khoo, T. L.*; Lopez-Martens, A.*; Seweryniak, D.*; Alcorta, M.*; Asai, Masato; Back, B. B.*; Bertone, P. F.*; Boilley, D.*; Carpenter, M. P.*; et al.

Physical Review Letters, 113(26), p.262505_1 - 262505_6, 2014/12

 Times Cited Count:34 Percentile:83.26(Physics, Multidisciplinary)

Fission barrier heights of a shell-stabilized superheavy nucleus $$^{254}$$No have been determined as a function of spin up to 19$$hbar$$ through the measured distribution of entry points of $$gamma$$ deexcitations in the excitation energy vs. spin plane. The fission barrier height of $$^{254}$$No was determined to be 6.0 MeV at spin 15$$hbar$$, and 6.6 MeV at spin 0$$hbar$$ by extrapolation. This demonstrates that the shell effect actually enlarges the fission barrier in such heavy nuclei and keeps the barrier high even at high spin.

Journal Articles

Neutron spectroscopic factors of $$^{55}$$Ni hole-states from (p,d) transfer reactions

Sanetullaev, A.*; Tsang, M. B.*; Lynch, W. G.*; Lee, J.*; Bazin, D.*; Chan, K. P.*; Coupland, D.*; Hanzl, V.*; Hanzlova, D.*; Kilburn, M.*; et al.

Physics Letters B, 736, p.137 - 141, 2014/09

 Times Cited Count:12 Percentile:67.92(Astronomy & Astrophysics)

no abstracts in English

Journal Articles

Exploring the stability of super heavy elements; First measurement of the fission barrier of $$^{254}$$No

Henning, G.*; Lopez-Martens, A.*; Khoo, T. L.*; Seweryniak, D.*; Alcorta, M.*; Asai, Masato; Back, B. B.*; Bertone, P. F.*; Boilley, D.*; Carpenter, M. P.*; et al.

EPJ Web of Conferences, 66, p.02046_1 - 02046_8, 2014/03

 Times Cited Count:3 Percentile:70.01

Fission barrier heights of $$^{254}$$No have been determined through the entry distribution method. The entry distribution is the initial distribution of excitation energy and spin from which the $$gamma$$ deexcitation starts in the fusion-evaporation reaction. The initial distribution is extracted from measured $$gamma$$-ray multiplicity and total $$gamma$$-ray energy. This paper describes the details of the entry distribution method, and reports the first determination of the fission barrier heights of $$^{254}$$No, which is the heaviest nucleus whose fission barrier has been measured.

12 (Records 1-12 displayed on this page)
  • 1