Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 28

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Edge pedestal characteristics in JET and JT-60U tokamaks under variable toroidal field ripple

Urano, Hajime; Saibene, G.*; Oyama, Naoyuki; Parail, V.*; de Vries, P.*; Sartori, R.*; Kamada, Yutaka; Kamiya, Kensaku; Loarte, A.*; L$"o$nnroth, J.*; et al.

Nuclear Fusion, 51(11), p.113004_1 - 113004_10, 2011/11

 Times Cited Count:10 Percentile:41.01(Physics, Fluids & Plasmas)

The effect of TF ripple on the edge pedestal characteristics are examined in JET and JT-60U. By the installation of ferritic inserts, TF ripple was reduced from $$1%$$ to $$0.6%$$ in JT-60U. In JET, TF ripple was varied from $$0.1%$$ to $$1%$$ by feeding different currents to TF coils. The pedestal pressure was similar with reduced ripple in JT-60U. In JET, no clear difference of the pedestal characteristics was also observed. The edge toroidal rotation clearly decreased in counter direction by increased TF ripple. However, in JT-60U, the ELM frequency decreased by $$sim 20%$$ and the increased ELM loss power by $$30%$$ with reduced ripple. In JET, ELM frequency increases only slightly with increased TF ripple. From this inter-machine experiment, TF ripple less than $$1%$$ does not strongly affect the pedestal pressure. The effect of TF ripple on pedestal characteristics at lower collisionality close to ITER should be investigated as a next step study.

Journal Articles

ITER test blanket module error field simulation experiments at DIII-D

Schaffer, M. J.*; Snipes, J. A.*; Gohil, P.*; de Vries, P.*; Evans, T. E.*; Fenstermacher, M. E.*; Gao, X.*; Garofalo, A. M.*; Gates, D. A.*; Greenfield, C. M.*; et al.

Nuclear Fusion, 51(10), p.103028_1 - 103028_11, 2011/10

 Times Cited Count:35 Percentile:80.59(Physics, Fluids & Plasmas)

Experiments at DIII-D investigated the effects of ferromagnetic error fields similar to those expected from proposed ITER Test Blanket Modules (TBMs). Studied were effects on: plasma rotation and locking; confinement; L-H transition; edge localized mode (ELM) suppression by resonant magnetic perturbations; ELMs and the H-mode pedestal; energetic particle losses; and more. The experiments used a 3-coil mock-up of 2 magnetized ITER TBMs in one ITER equatorial port. The experiments did not reveal any effect likely to preclude ITER operations with a TBM-like error field. The largest effect was slowed plasma toroidal rotation v across the entire radial profile by as much as $$Delta v/v_{0} sim 50%$$ via non-resonant braking. Changes to global $$Delta n/n_{0}$$, $$Delta v/v_{0}$$ and $$Delta H_{98}/H_{98,0}$$ were $$sim$$3 times smaller. These effects are stronger at higher $$beta$$ and lower $$v_{0}$$. Other effects were smaller.

Journal Articles

Pedestal stability comparison and ITER pedestal prediction

Snyder, P. B.*; Aiba, Nobuyuki; Beurskens, M.*; Groebner, R. J.*; Horton, L. D.*; Hubbard, A. E.*; Hughes, J. W.*; Huysmans, G. T. A.*; Kamada, Yutaka; Kirk, A.*; et al.

Nuclear Fusion, 49(8), p.085035_1 - 085035_8, 2009/08

 Times Cited Count:170 Percentile:98.64(Physics, Fluids & Plasmas)

The pressure at the top of the edge transport barrier impacts fusion performance, while large ELMs can constrain material lifetimes. Investigation of intermediate wavelength MHD mode has led to improved understanding of the pedestal height and the mechanism for ELMs. The combination of high resolution diagnostics and a suite of stability codes has made edge stability analysis routine, and contribute both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard (Type I) ELM regime, and for small ELM and ELM-free regimes. We further discuss a new predictive model for the pedestal height and width (EPED1), developed by self-consistently combining a simple width model with peeling-ballooning stability calculations. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.

Journal Articles

Experimental studies of ITER demonstration discharges

Sips, A. C. C.*; Casper, T.*; Doyle, E. J.*; Giruzzi, G.*; Gribov, Y.*; Hobirk, J.*; Hogeweij, G. M. D.*; Horton, L. D.*; Hubbard, A. E.*; Hutchinson, I.*; et al.

Nuclear Fusion, 49(8), p.085015_1 - 085015_11, 2009/08

 Times Cited Count:53 Percentile:87.31(Physics, Fluids & Plasmas)

Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has been verified in dedicated experiments. New data are obtained from C-Mod, ASDEX Upgrade, DIII-D, JT-60U and JET. Results show that breakdown for $$E$$$$_{axis}$$ $$<$$ 0.23-0.33 V m$$^{-1}$$ is possible unassisted (ohmic) for large devices like JET and attainable in devices with a capability of using ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. This allows optimization of the flux usage from the PF set. Additional heating keeps $$l$$$$_{i}$$(3) $$<$$ 0.85 during the ramp up to $$q$$$$_{95}$$ = 3. A rise phase with an H-mode transition is capable of achieving $$l$$$$_{i}$$(3) $$<$$ 0.7 at the start of the FT. Operation of the H-mode reference scenario at $$q$$$$_{95}$$ $$sim$$ 3 and the hybrid scenario at $$q$$$$_{95}$$ = 4-4.5 during the FT phase is documented, providing data for the $$l$$$$_{i}$$(3) evolution after the H-mode transition and the $$l$$$$_{i}$$(3) evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation. The inductance could be kept $$leq$$ 1.2 during the first half of the current decay, using a slow $$I$$$$_{p}$$ ramp down, but still consuming flux from the transformer. Alternatively, the discharges can be kept in H-mode during most of the ramp down, requiring significant amounts of additional heating.

Journal Articles

Progress on the heating and current drive systems for ITER

Jacquinot, J.*; Albajar, F.*; Beaumont, B.*; Becoulet, A.*; Bonicelli, T.*; Bora, D.*; Campbell, D.*; Chakraborty, A.*; Darbos, C.*; Decamps, H.*; et al.

Fusion Engineering and Design, 84(2-6), p.125 - 130, 2009/06

 Times Cited Count:24 Percentile:82.29(Nuclear Science & Technology)

The electron cyclotron (EC), ion cyclotron (IC), neutral beam (NB) and, lower hybrid (LH) systems for ITER have been reviewed in 2007/2008 in light of progress of physics and technology. Although the overall specifications are unchanged, notable changes have been approved. Firstly, the full 73MW should be commissioned and available on a routine basis before the D/T phase. Secondly, the possibility to operate the NB at full power during the hydrogen phase requiring new shine through protection; IC with 2 antennas with increased robustness; 2 MW transmission systems to provide an easier upgrading of the EC power; the addition of a building dedicated to the RF power sources and to a testing facility for acceptance of diagnostics and heating port plugs. Thirdly, the need of a plan for developing, in time for the active phase, a CD system such as LH suitable for very long pulse operation of ITER was recognized.

Journal Articles

Effects of ferromagnetic components on energetic ion confinement in ITER

Shinohara, Koji; Oikawa, Toshihiro; Urano, Hajime; Oyama, Naoyuki; L$"o$nnroth, J.*; Saibene, G.*; Parail, V.*; Kamada, Yutaka

Fusion Engineering and Design, 84(1), p.24 - 32, 2009/01

 Times Cited Count:25 Percentile:83.26(Nuclear Science & Technology)

Journal Articles

Pedestal stability comparison and ITER pedestal prediction

Snyder, P. B.*; Aiba, Nobuyuki; Beurskens, M.*; Groebner, R. J.*; Horton, L. D.*; Hubbard, A. E.*; Hughes, J. W.*; Huysmans, G. T. A.*; Kamada, Yutaka; Kirk, A.*; et al.

Proceedings of 22nd IAEA Fusion Energy Conference (FEC 2008) (CD-ROM), 8 Pages, 2008/10

Investigation of intermediate wavelength MHD modes has led to improved understanding of important constraints on the pedestal height and the mechanism for ELMs. The combination of high resolution pedestal diagnostics and a suite of highly efficient stability codes, has made edge stability analysis routine on several major tokamaks, contributing both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard ELM regime, and for small ELM and ELM-free regimes. We further use the stability constraint on pedestal height to test models of the pedestal width, and self-consistently combine a simple width model with MHD stability calculations to develop a new predictive model (EPED1) for the pedestal height and width. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.

Journal Articles

Experimental studies of ITER demonstration discharges

Sips, A. C. C.*; Casper, T. A.*; Doyle, E. J.*; Giruzzi, G.*; Gribov, Y.*; Hobirk, J.*; Hogeweij, G. M. D.*; Horton, L. D.*; Hubbard, A. E.*; Hutchinson, I.*; et al.

Proceedings of 22nd IAEA Fusion Energy Conference (FEC 2008) (CD-ROM), 8 Pages, 2008/10

The ITER discharge evolution has been verified in dedicated experiments. Results show that breakdown at E$$<$$ 0.23-0.32 V/m is possible un-assisted (ohmic) for large devices like JET and attainable in all devices with ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. Operation of the H-mode reference scenario at q$$_{95}$$ = 3 and the hybrid scenario at q95=4-4.5 during the flat top phase was documented. Specific studies during the flat top phase provide data for the li evolution after the H-mode transition and the li evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation.

Journal Articles

Effect of toroidal field ripple on plasma rotation in JET

de Vries, P. C.*; Salmi, A.*; Parail, V.*; Giroud, C.*; Andrew, Y.*; Biewer, T. M.*; Cromb$'e$, K.*; Jenkins, I.*; Johnson, T.*; Kiptily, V.*; et al.

Nuclear Fusion, 48(3), p.035007_1 - 035007_6, 2008/03

 Times Cited Count:48 Percentile:85.94(Physics, Fluids & Plasmas)

Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude from an average value of M = 0.40-0.55 for operations at the standard JET ripple of 0.08% to M = 0.25-0.40 for 0.5% ripple and M = 0.1-0.3 for 1% ripple. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes ($$sim1%$$) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation.

Journal Articles

Effect of toroidal field ripple and toroidal rotation on H-mode performance and ELM characteristics in JET/JT-60U similarity experiments

Oyama, Naoyuki; Saibene, G.*; Kamada, Yutaka; Kamiya, Kensaku; Loarte, A.*; L$"o$nnroth, J.*; Parail, V.*; Sakamoto, Yoshiteru; Salmi, A.*; Sartori, R.*; et al.

Journal of Physics; Conference Series, 123, p.012015_1 - 012015_13, 2008/00

 Times Cited Count:8 Percentile:90.42(Physics, Fluids & Plasmas)

The effect of the toroidal field ripple and the edge toroidal rotation on H-mode and pedestal performance as well as ELM characteristics are investigated both in JET and JT-60U. In JT-60U, the amplitude of TF ripple was reduced from 1.2 % to 0.5 % after the installation of ferritic steel tiles. In JET, the ripple amplitude can actively be varied. In both devices, edge rotation in the same direction to the plasma current was reduced with increasing the ripple amplitude. Even at the same amplitude of 0.5 %, the achievable edge rotation in JT-60U was still lower than that in JET. A series of power and density scans performed at several ripple amplitude indicated that plasmas with smaller ripple amplitude and/or larger co-rotation are favorable to achieve higher pedestal pressure and plasma confinement in both devices. As for ELM characteristics, larger co-rotation seems to increase the ELM energy loss together with the reduction of the ELM frequency.

Journal Articles

Design of electron cyclotron heating and current drive system of ITER

Kobayashi, Noriyuki; Bigelow, T.*; Bonicelli, T.*; Cirant, S.*; Denisov, G.*; Heidinger, R.*; Henderson, M.*; Hogge, J.-P.*; Piosczyk, B.*; Ramponi, G.*; et al.

AIP Conference Proceedings 933, p.413 - 416, 2007/10

Since the EDA 2001, Design of Electron Cyclotron Heating and Current Drive (ECH&CD) System have been modified due to progress of physics understanding and change of interface. Nominal RF power 20 MW is injected by four upper launchers or one equatorial launcher. RF beams are steered by a front steering mirror. DCHV power supply will be composed of IGBT pulse step modulators because of high frequency modulation and design flexibility to three different types of 170 GHz gyrotrons from three parties. The RF power is transmitted by 63.5 mm dia corrugated waveguide and switched by a waveguide switch between the upper launcher and the equatorial launcher. A start-up system for initial discharge is composed of three 127.5 GHz gyrotrons and dedicated DCHV power supply. Three of transmission lines are shared between 170 GHz and 127.5 GHz gyrotrons to inject start-up RF beam through the equatorial launcher. R&Ds for high power long pulse have been on-going to obtain a reliable ITER ECH&CD system.

Journal Articles

The H-mode pedestal, ELMs and TF ripple effects in JT-60U/JET dimensionless identity experiments

Saibene, G.*; Oyama, Naoyuki; L$"o$nnroth, J.*; Andrew, Y.*; la Luna, E. de.*; Giroud, C.*; Huysmans, G. T. A.*; Kamada, Yutaka; Kempenaars, M. A. H.*; Loarte, A.*; et al.

Nuclear Fusion, 47(8), p.969 - 983, 2007/08

 Times Cited Count:36 Percentile:74.52(Physics, Fluids & Plasmas)

This paper summarizes results of dimensionless identity experiments in JT-60U and JET, aimed at the comparison of the H-mode pedestal and ELM behaviour in the two devices. In general, pedestal pressure in JT-60U is lower than in JET. These results motivated a closer investigation of experimental conditions in the two devices, to identify possible "hidden" physics that prevents obtaining a good match of pedestal values over a large range of plasmas parameters. Ripple-induced ion losses of the medium bore plasma used in JT-60U for the similarity experiments are identified as the main difference with JET. The magnitude of the JT-60U ripple losses is sufficient to induce counter-toroidal rotation in co-injected plasma. The influence of ripple losses was demonstrated at high q plasma: reducing ripple losses by $$sim$$2 by replacing positive with negative neutral beam injection resulted in an increased pedestal pressure in JT-60U, providing a good match to full power JET H-modes.

Journal Articles

Progress in the ITER physics basis, 2; Plasma confinement and transport

Doyle, E. J.*; Houlberg, W. A.*; Kamada, Yutaka; Mukhovatov, V.*; Osborne, T. H.*; Polevoi, A.*; Bateman, G.*; Connor, J. W.*; Cordey, J. G.*; Fujita, Takaaki; et al.

Nuclear Fusion, 47(6), p.S18 - S127, 2007/06

no abstracts in English

Journal Articles

Effects of ripple-induced ion thermal transport on H-mode plasma performance

L$"o$nnroth, J.-S.*; Parail, V.*; Hyn$"o$nen, V.*; Johnson, T.*; Kiviniemi, T.*; Oyama, Naoyuki; Beurskens, M.*; Howell, D.*; Saibene, G.*; de Vries, P.*; et al.

Plasma Physics and Controlled Fusion, 49(3), p.273 - 295, 2007/03

 Times Cited Count:15 Percentile:47.4(Physics, Fluids & Plasmas)

It is investigated whether differences in the MHD stability of the pedestal, including effects of plasma rotation and aspect ratio, can explain the results of JET/JT-60U similarity experiments. As a result, these mechanisms fail to explain the experimental observations. Therefore, the effects of ripple losses on H-mode performance were investigated. The analysis shows that ripple losses of thermal ions can affect H-mode plasma performance very sensitively. Orbit-following simulations indicate that losses due to diffusive transport give rise to a wide radial distribution of enhanced ion thermal transport, whereas non-diffusive losses have a very edge-localized distribution. In predictive transport simulations with an energy sink term in the continuity equation for the ion pressure representing non-diffusive losses, reduced performance as well as an increase in the ELM frequency are demonstrated.

Journal Articles

Edge pedestal physics and its implications for ITER

Kamada, Yutaka; Leonard, A. W.*; Bateman, G.*; Becoulet, M.*; Chang, C. S.*; Eich, T.*; Evans, T. E.*; Groebner, R. J.*; Guzdar, P. N.*; Horton, L. D.*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03

no abstracts in English

Journal Articles

Theoretical analysis and predictive modelling of ELMs mitigation by enhanced toroidal ripple and ergodic magnetic field

Parail, V. V.*; Evans, T. E.*; Johnson, T.*; L$"o$nnroth, J.*; Oyama, Naoyuki; Saibene, G.*; Sartori, R.*; Salmi, A.*; de Vries, P.*; Becoulet, M.*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03

Ripple-induced transport and externally driven resonance magnetic perturbations (RMP) near the separatrix are considered as prospective methods of ELM mitigation in present day tokamaks and ITER. Although these methods rely on different physics to generate extra transport, the influence of this transport on plasma dynamics and ELM mitigation is either similar or supplementary. The results of extensive theoretical analysis of the underlying physics processes behind transport induced by ripple and RMP is presented together with predictive transport modelling. Comparison with experiments on present-day tokamaks is given.

Journal Articles

Pedestal conditions for small ELM regimes in tokamaks

Oyama, Naoyuki; Gohil, P.*; Horton, L. D.*; Hubbard, A. E.*; Hughes, J. W.*; Kamada, Yutaka; Kamiya, Kensaku; Leonard, A. W.*; Loarte, A.*; Maingi, R.*; et al.

Plasma Physics and Controlled Fusion, 48(5A), p.A171 - A181, 2006/05

 Times Cited Count:81 Percentile:92.09(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Survey of type I ELM dynamics measurements

Leonard, A. W.*; Asakura, Nobuyuki; Boedo, J. A.*; Becoulet, M.*; Counsell, G. F.*; Eich, T.*; Fundamenski, W.*; Herrmann, A.*; Horton, L. D.*; Kamada, Yutaka; et al.

Plasma Physics and Controlled Fusion, 48(5A), p.A149 - A162, 2006/05

 Times Cited Count:40 Percentile:78.1(Physics, Fluids & Plasmas)

This report summarizes Type I edge localized mode (ELM) dynamics measurements from a number of tokamaks. Several transport mechanisms are conjectured to be responsible for ELM transport, including convective transport due to filamentary structures ejected from the pedestal, parallel transport due to edge ergodization or magnetic reconnection and turbulent transport driven by the high edge gradients when the radial electric field shear is suppressed. The experimental observations are assessed for their validation, or conflict, with these ELM transport conjectures.

Journal Articles

Small ELM regimes with good confinement on JET and comparison to those on ASDEX Upgrade, Alcator C-mod and JT-60U

Stober, J.*; Lomas, P. J.*; Saibene, G.*; Andrew, Y.*; Belo, P.*; Conway, G. D.*; Herrmann, A.*; Horton, L. D.*; Kempenaars, M.*; Koslowski, H.-R.*; et al.

Nuclear Fusion, 45(11), p.1213 - 1223, 2005/11

 Times Cited Count:40 Percentile:76.37(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Dimensionless pedestal identity experiments in JT-60U and JET in ELMy H-mode plasmas

Saibene, G.*; Hatae, Takaki; Campbell, D. J.*; Cordey, J. G.*; la Luna, E. de.*; Giroud, C.*; Guenther, K.*; Kamada, Yutaka; Kempenaars, M. A. H.*; Loarte, A.*; et al.

Plasma Physics and Controlled Fusion, 46(5A), p.A195 - A205, 2004/05

 Times Cited Count:10 Percentile:32.04(Physics, Fluids & Plasmas)

Towards establishment of the control scheme and evaluation of the H-mode pedestal structure and behavior of the Edge Localized Mode (ELM) in ITER, we carried out an comparison experiment among the two large tokamaks (JT-60 and JET) for the first time. This paper report the initial results. In both devices, the same plasma shape was adopted and the three non-dimensional parameters (beta, normalized gyro radius and the normalized collisionality) were set identical. The pedestal width was almost similar in the two devices, however the pressure gradient was higher in JET by a factor of 1.5. The possible reason is a small aspect ration in JET.

28 (Records 1-20 displayed on this page)