Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Summary of the ARIES Town Meeting; Edge plasma physics and plasma material interactions in the fusion power plant regime

Tillack, M. S.*; Turnbull, A. D.*; Kessel, C. E.*; Asakura, Nobuyuki; Garofalo, A. M.*; Holland, C.*; Koch, F.*; Linsmeier, Ch.*; Lisgo, S.*; Maingi, R.*; et al.

Nuclear Fusion, 53(2), p.027003_1 - 027003_23, 2013/02

 Times Cited Count:5 Percentile:21.97(Physics, Fluids & Plasmas)

This review summarizes the presentations and discussions by experts in the fields of edge plasma physics and plasma material interactions at a workshop organized for the purpose of evaluating current status and extrapolating forward to the post-ITER power plant regime. The topics included physics, modelling, experimental results, benchmarking and programme planning.

Journal Articles

Progress in physics basis and its impact on ITER

Shimada, Michiya; Campbell, D.*; Stambaugh, R.*; Polevoi, A. R.*; Mukhovatov, V.*; Asakura, Nobuyuki; Costley, A. E.*; Donn$'e$, A. J. H.*; Doyle, E. J.*; Federici, G.*; et al.

Proceedings of 20th IAEA Fusion Energy Conference (FEC 2004) (CD-ROM), 8 Pages, 2004/11

This paper summarises recent progress in the physics basis and its impact on the expected performance of ITER. Significant progress has been made in many outstanding issues and in the development of hybrid and steady state operation scenarios, leading to increased confidence of achieving ITER's goals. Experiments show that tailoring the current profile can improve confinement over the standard H-mode and allow an increase in beta up to the no-wall limit at safety factors $$sim$$ 4. Extrapolation to ITER suggests that at the reduced plasma current of $$sim$$ 12MA, high Q $$>$$ 10 and long pulse ($$>$$1000 s) operation is possible with benign ELMs. Analysis of disruption scenarios has been performed based on guidelines on current quench rates and halo currents, derived from the experimental database. With conservative assumptions, estimated electromagnetic forces on the in-vessel components are below the design target values, confirming the robustness of the ITER design against disruption forces.

2 (Records 1-2 displayed on this page)
  • 1