Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Measurement of 100- and 290-MeV/A carbon incident neutron production cross sections for carbon, nitrogen and oxygen

Shigyo, Nobuhiro*; Uozumi, Yusuke*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Mizuno, Takafumi*; Takamiya, Masanori*; Hashiguchi, Taro*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; et al.

Nuclear Data Sheets, 119, p.303 - 306, 2014/05

 Times Cited Count:0 Percentile:0.02(Physics, Nuclear)

Heavy ion cancer therapy has been increased by reason of its clinical advantages. During the treatment, the secondary particles such as neutron and $$gamma$$-ray are produced by nuclear reactions of a heavy ion incidence on a nucleus in a patient body. Estimation of the secondary neutrons yields data is essential for assessment of radiation safety on both of workers and public in treatment facilities. We have measured the neutron yields from carbon ion incidence on carbon, nitrogen and oxygen targets in wide angular range from 15$$^{circ}$$ to 90$$^{circ}$$ with 100- and 290-MeV/u.

Journal Articles

Measurement of neutron yields from a water phantom bombarded by 290 MeV/u carbon ions

Shigyo, Nobuhiro*; Uozumi, Yusuke*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Hirabayashi, Keiichi*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; Matsufuji, Naruhiro*

Progress in Nuclear Science and Technology (Internet), 4, p.709 - 712, 2014/04

Heavy ion cancer therapy has been increased by reason of its clinical advantages. During the treatment, the secondary particles such as neutron and $$gamma$$-ray are produced by nuclear reactions of a heavy ion incidence on a nucleus in a patient body. Estimation of the secondary neutrons yields data is essential for assessment of radiation safety on both of workers and public in treatment facilities. Neutron energy spectra from a water phantom simulating the patient body were obtained at GSI only for forward directions. We measured the neutron yields from carbon ion incident on a water phantom in wide angular range from 15$$^{circ}$$ to 90$$^{circ}$$ with the therapeutic ion energy.

Journal Articles

Measurement of 100 MeV/u carbon incident neutron production cross sections on a carbon target

Shigyo, Nobuhiro*; Uozumi, Yusuke*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Mizuno, Takafumi*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; Matsufuji, Naruhiro*

JAEA-Conf 2013-002, p.137 - 142, 2013/10

Heavy ion cancer therapy has been increased by reason of its clinical advantages. During the treatment, the secondary particles such as neutron and $$gamma$$-ray are produced by nuclear reactions of a heavy ion incidence on a nucleus in a patient body. Estimation of double differential cross sections of secondary neutron is important to risk assessment of extra dose to organs in the vicinity of the irradiated tumor. Accurate data in neutron energy around 1 MeV is required because neutron in the energy region has large relative biological effectiveness. Neutron double differential cross sections by inducing 290 MeV/u carbon ion to bio-elements have been obtained experimentally. In order to have knowledge of neutron production by deceleration carbon in a human body, we measured the neutron yields from carbon ion incidence on a carbon target of neutron energy below 1 MeV in wide angular range from 15$$^{circ}$$ to 90$$^{circ}$$ with 100 MeV/u.

Journal Articles

Measurement of neutron- and photon-production cross sections from heavy-ion reactions on tissue equivalent elements

Uozumi, Yusuke*; Shigyo, Nobuhiro*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Mizuno, Takafumi*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; Matsufuji, Naruhiro*; et al.

HIMAC-140, p.234 - 235, 2013/08

In the heavy-ion radiotherapy, considerable discussion has been attracted regarding the potential for second cancer induction by secondary neutrons produced from the primary heavy-ion fragmentation. We have started new measurements at 100 MeV/u to investigate the neutron production by heavy ions decelerating in a patient body.

Journal Articles

Measurements of neutron- and photon-production cross sections from heavy-ion reactions on tissue equivalent elements

Uozumi, Yusuke*; Shigyo, Nobuhiro*; Kajimoto, Tsuyoshi*; Hirabayashi, Keiichi*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; et al.

HIMAC-138, p.237 - 238, 2012/08

In the heavy-ion radiotherapy, considerable discussion has been attracted regarding the potential for second cancer induction by secondary neutrons produced from the primary heavy-ion fragmentation. It is important to measure energy-angle double-differential cross sections (DDXs) of neutron- and photon-productions in heavy-ion nuclear reactions. Since it is notoriously hard to measure the spectral cross sections of neutrons in an energy range of around 1 MeV where the RBE value reaches at its maximum. In the project by last year, experiments were carried out at the synchrotron HIMAC of NIRS, Japan. The beams were $$^{12}$$C and $$^{16}$$O of 290 MeV/u and bombarded a carbon target. In measurements of neutrons and photons were used liquid scintillator detectors of 5" and 2". We have succeeded to lower the neutron energy threshold down to 0.6 MeV. The present results for neutron productions are in reasonable agreements with PHITS. Since our goal in technical aspects has been fulfilled, measurements will be continued for other reactions.

Journal Articles

Measurement of neutron-production double-differential cross-sections on carbon bombarded with 290-MeV/nucleon carbon and oxygen ions

Satoh, Daiki; Moriguchi, Daisuke*; Kajimoto, Tsuyoshi*; Uehara, Haruhiko*; Shigyo, Nobuhiro*; Ueyama, Masahiko*; Yoshioka, Masakatsu*; Uozumi, Yusuke*; Sanami, Toshiya*; Koba, Yusuke*; et al.

Nuclear Instruments and Methods in Physics Research A, 644(1), p.59 - 67, 2011/07

 Times Cited Count:18 Percentile:77.43(Instruments & Instrumentation)

Neutron-production double-differential cross sections on carbon-carbon and oxygen-carbon reactions with incident heavy-ion energy of 290 MeV/nucleon were measured by time-of-flight method using liquid organic scintillators. By use of a detection system specialized for low-energy neutrons, the cross sections were obtained in a wide energy region from several hundred MeV down to 0.6 MeV for the oxygen-ion incidences. The experimental data were compared with the calculation results using the Monte-Carlo simulation code, PHITS. The PHITS results gave an overall agreement with the measured data within a factor of two.

Oral presentation

Measurement of neutron yields from a water phantom induced by 290 MeV/u carbon beam

Shigyo, Nobuhiro*; Uozumi, Yusuke*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Hirabayashi, Keiichi*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; Matsufuji, Naruhiro*

no journal, , 

Heavy ion cancer therapy has been increased by reason of its clinical advantages. During the treatment, the secondary particles such as neutron and $$gamma$$-ray are produced by nuclear reactions of a heavy ion incidence on a nucleus in a patient body. Estimation of the secondary neutrons yields data is essential for assessment of radiation safety on both of workers and public in treatment facilities. Neutron energy spectra from a water phantom simulating the patient body were obtained at GSI only for forward directions. We measured the neutron yields from carbon ion incident on a water phantom in wide angular range from 15$${^circ}$$ to 90$${^circ}$$ with the therapeutic ion energy.

7 (Records 1-7 displayed on this page)
  • 1