Refine your search:     
Report No.
 - 
Search Results: Records 1-16 displayed on this page of 16
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of risk assessment methodology against natural external hazards for sodium-cooled fast reactors; Project overview and margin assessment methodology against volcanic eruption

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; et al.

Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 12 Pages, 2016/10

This paper describes mainly volcanic margin assessment methodology development in addition to the project overview. The volcanic tephra could potentially clog filters of air-intakes that need the decay heat removal. The filter clogging can be calculated by atmospheric concentration and fallout duration of the volcanic tephra and also suction flow rate of each component. In this paper, the margin was defined as a grace period to a filter failure limit. Consideration is needed only when the grace period is shorter than the fallout duration. The margin by component was calculated using the filter failure limit and the suction flow rate of each component. The margin by sequence was evaluated based on an event tree and the margin by component. An accident management strategy was also suggested to extend the margin; for instance, manual trip of the forced circulation operation, sequential operation of three air coolers, and covering with pre-filter.

Journal Articles

Development of risk assessment methodology of decay heat removal function against natural external hazards for sodium-cooled fast reactors; Project overview and volcanic PRA methodology

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; et al.

Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 10 Pages, 2016/06

This paper describes mainly volcanic probabilistic risk assessment (PRA) methodology development for sodium-cooled fast reactors in addition to the project overview. The volcanic ash could potentially clog air filters of air-intakes that are essential for the decay heat removal. The degree of filter clogging can be calculated by atmospheric concentration of ash and tephra fallout duration and also suction flow rate of each component. The atmospheric concentration can be calculated by deposited tephra layer thickness, tephra fallout duration and fallout speed. This study evaluated a volcanic hazard using a combination of tephra fragment size, layer thickness and duration. In this paper, each component functional failure probability was defined as a failure probability of filter replacement obtained by using a grace period to a filter failure limit. Finally, based on an event tree, a core damage frequency was estimated about 3$$times$$10$$^{-6}$$/year in total by multiplying discrete hazard probabilities by conditional decay heat removal failure probabilities. A dominant sequence was led by the loss of decay heat removal system due to the filter clogging after the loss of emergency power supply. A dominant volcanic hazard was 10$$^{-2}$$ kg/m$$^{3}$$ of atmospheric concentration, 0.1 mm of tephra diameter, 50-75 cm of deposited tephra layer thickness, and 1-10 hr of tephra fallout duration.

Journal Articles

Development of risk assessment methodology against natural external hazards for sodium-cooled fast reactors; Project overview and strong wind PRA methodology

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; et al.

Proceedings of 2015 International Congress on Advances in Nuclear Power Plants (ICAPP 2015) (CD-ROM), p.454 - 465, 2015/05

This paper describes mainly strong wind PRA methodology development in addition to the project overview. In developing the strong wind PRA methodology, hazard curves were estimated by using Weibull and Gumbel distributions based on weather data recorded in Japan. The obtained hazard curves were divided into five discrete categories for event tree quantification. Next, failure probabilities for decay heat removal related components were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or outtake in the decay heat removal system, and fragility caused by the missile impacts. Finally, based on the event tree, the core damage frequency was estimated about 6$$times$$10$$^{-9}$$/year by multiplying the discrete hazard probabilities in the Gumbel distribution by the conditional decay heat removal failure probabilities. A dominant sequence was led by the assumption that the operators could not extinguish fuel tank fire caused by the missile impacts and the fire induced loss of the decay heat removal system.

Journal Articles

Development of risk assessment methodology of decay heat removal function against external hazards for sodium-cooled fast reactors, 1; Project overview and margin assessment methodology against snow

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; et al.

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 10 Pages, 2015/05

This paper describes mainly snow margin assessment methodology development in addition to the project overview. For the snow margin assessment, the index is a combination of a snowfall rate and duration. Since snow removal can be expected during the snowfall, the developed snow margin assessment methodology is such that the margin was regarded as the snowfall duration up to the decay heat removal failure which was defined as when the snow removal rate was smaller than the snowfall rate.

Journal Articles

Development of margin assessment methodology of decay heat removal function against external hazards, 1; Project overview and snow PRA methodology

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; et al.

Proceedings of 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10) (USB Flash Drive), 12 Pages, 2014/12

This paper describes mainly snow probabilistic risk assessment (PRA) methodology development in addition to the project overview. In snow hazard category, the accident sequence was evaluated by producing event trees which consist of several headings representing the loss of decay heat removal. Snow removal action and manual operation of the air cooler dampers were introduced into the event tree as accident managements. The snow PRA showed less than 10$$^{-6}$$/reactor-year of core damage frequency.

Journal Articles

Development of margin assessment methodology of decay heat removal function against external hazards; Project overview and preliminary risk assessment against snow

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; Takata, Takashi*

Proceedings of 12th Probabilistic Safety Assessment and Management Conference (PSAM-12) (USB Flash Drive), 11 Pages, 2014/06

This paper describes mainly preliminary risk assessment against snow in addition to the project overview. The snow hazard indexes are the annual maximum snow depth and the annual maximum daily snowfall depth. Snow hazard curves for the two indexes were developed using 50 year weather data at the typical sodium-cooled fast reactor site in Japan. In this paper, the snow risk assessment showed less than 10$$^{-6}$$/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1-2m/day of snowfall velocity and 0.75-1.0 day of snowfall duration. Sensitivity analyses indicated important human actions, which were the improvement of snow removal velocity and the awareness of snow removal necessity.

Journal Articles

AMS radiocarbon dating of wood trunks in the pumiceous deposits of the Kikai-Akahoya eruption in Yakushima Island, SW Japan

Okuno, Mitsuru*; Nakamura, Toshio*; Geshi, Nobuo*; Kimura, Katsuhiko*; Kokubu, Yoko; Kobayashi, Tetsuo*

Nuclear Instruments and Methods in Physics Research B, 294, p.602 - 605, 2013/01

 Times Cited Count:4 Percentile:33.02(Instruments & Instrumentation)

We found numerous wood trunks from pumiceous deposits along Nagata, Isso and Miyanoura rivers on the northern side of Yakushima Island, 60 km south of Kyushu Island, and conducted radiocarbon dating using accelerator mass spectrometry (AMS). The obtained $$^{14}$$C dates were around 6500 BP, and geological characteristics of the pumiceous deposits indicate that these specimens were buried during the Kikai-Akahoya (K-Ah) eruption from the Kikai caldera. However, they are not charred, suggesting that the origin of these deposits is not of pyroclastic flow but that of tsunami. Fourteen taxa were identified through anatomical characteristics. This is the first discovery on species of the forest of the Yakushima Island before the devastating eruption.

Oral presentation

A Study on the volcanic scenario adapting the FEP analysis; Application to the eruption of Izu-Oshima volcano

Murakami, Makoto*; Kawamura, Makoto; Sasaki, Hisashi*; Makino, Hitoshi; Seo, Toshihiro; Nishimura, Takuya*; Umeda, Koji; Oi, Takao; Geshi, Nobuo*; Oikawa, Teruki*

no journal, , 

The volcanic scenario has mainly been conventionally examined from a viewpoint of empiricism based on the understanding of physics and/or scientific mechanism of volcanic activity. However, when a volcanic scenario is examined only based on the empiricism of a volcano, there is a possibility that the phenomena which the volcano had not experienced in the past may fall out from the scenario. Therefore, it is necessary to follow up omission by collecting information from various volcanoes. The purpose of this research is to develop the scenario analysis technique which can perform prediction of progress of volcanic activity by applying the FEP analysis technique examined by High level radioactive waste geological disposal. As a result, a volcanic scenario can be built by applying the FEP analysis technique. It was understood that the FEP analysis technique developed by geological isolation can apply also to the field of other technology. We will collect information further and apply this technique to other volcanoes. We consider improvement of the FEP analysis technique based on the result of this study.

Oral presentation

A Study on a methodology of volcanic scenario analysis applying FEP analysis

Murakami, Makoto*; Kawamura, Makoto; Makino, Hitoshi; Geshi, Nobuo*; Oikawa, Teruki*; Sasaki, Hisashi*; Seo, Toshihiro; Nishimura, Takuya*; Umeda, Koji; Oi, Takao

no journal, , 

no abstracts in English

Oral presentation

A Study on a methodology of volcanic scenario analysis applying FEP analysis; A Case study

Murakami, Makoto*; Kawamura, Makoto*; Makino, Hitoshi; Geshi, Nobuo*; Oikawa, Teruki*; Nishimura, Takuya*; Umeda, Koji; Sasaki, Hisashi*; Seo, Toshihiro; Oi, Takao*

no journal, , 

The prediction technique of the volcanism is requested from the viewpoint of disaster prevention now. The prediction method using the volcanic scenario has been paid to attention. The purpose of this study is to develop the methodology of the volcanic scenario construction that the progress of the volcanic activity is predictable by progressively applying the FEP analysis methodology in the research of HLW geological disposal to the volcanic activity. A basic concept is as follows. We resolve the phenomena to compose the volcanic activity to the single-process referring to past volcanic eruptions. The single-process is arranged to the logical function theory. And, the development of volcanic scenarios is expressed as a chain of the functions. As a result, we developed adaptable volcano scenarios to the purpose. Moreover, it could be expected that the observations are made more effective by feeding back this methodology to the field survey.

Oral presentation

Research and development of margin assessment methodology of decay heat removal function against external hazards, 1; Development of margin assessment methodology concept

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; Takata, Takashi*

no journal, , 

This study aims to develop margin evaluation methodology for decay heat removal function in sodium cooled fast reactors against representative external hazards such as external weather (Snow pack, strong wind, tornado and rainfall), volcanic eruption, and forest fire. This report describes four-year project overview and establishing concept for margin evaluation methodology as part of the first year result.

Oral presentation

Research and development of margin assessment methodology of decay heat removal function against external hazards, 5; Progress in JFY2013 and margin assessment methodology against snow and tornado hazards

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Furukawa, Ryuta*; Geshi, Nobuo*; Nanayama, Futoshi*; et al.

no journal, , 

PRA and margin assessment methodologies are being developed for sodium-cooled fast reactors against representative external hazards. This report describes the overview of second-year (JPY2015) outcomes and the development of the margin assessment methodology against snow and tornado.

Oral presentation

Development of PRA and margin assessment methodology of decay heat removal function against external hazards

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; et al.

no journal, , 

This paper describes mainly snow margin assessment methodology development in addition to the project overview. For the snow margin assessment, the index is the combination of a snowfall rate and duration. Since snow removal can be expected for the snowfall, this study developed the snow margin assessment methodology that the margin was regarded as the snowfall duration to the decay heat removal failure which was defined as when the snow removal rate was smaller than the snowfall rate.

Oral presentation

Research and development of margin assessment methodology of decay heat removal function against external hazards, 10; Progress in JFY2014 and event sequence assessment methodology against volcanic eruption hazards

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Furukawa, Ryuta*; Geshi, Nobuo*; Nanayama, Futoshi*; et al.

no journal, , 

PRA and margin assessment methodologies are being developed for sodium-cooled fast reactors against representative external hazards. This report describes the overview of Third-year (JPY2014) updates and the development of the sequence assessment methodology against volcanic eruption hazard.

Oral presentation

Research and development on risk assessment methodology for sodium-cooled fast reactor against external hazards

Yamano, Hidemasa; Nishino, Hiroyuki; Okano, Yasushi; Kurisaka, Kenichi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Furukawa, Ryuta*; Geshi, Nobuo*; Nanayama, Futoshi*; et al.

no journal, , 

A four-year research project since 2012 is being performed to develop risk assessment methodologies that include probabilistic risk assessment (PRA) and margin assessment methodologies against external hazards mainly for a sodium-cooled fast reactor. The present paper describes briefly the project overview and then mainly the development of PRA and margin assessment methodologies against strong wind. In this project, by 2014, PRA methodologies against snow, tornado, rain and strong wind were developed as well as their hazard evaluation methodologies. For a volcanic eruption hazard, tephra fallout simulations were carried out to contribute to the hazard evaluation methodology development. In developing the strong wind PRA methodology, hazard curves were estimated using the Gumbel distributions based on weather data recorded in Japan. Next, failure probabilities for components related to the decay heat removal function were calculated as a product of two probabilities: a probability for the missiles to enter the intake/outtake in the decay heat removal system, and fragility caused by the missile impacts. After developing event trees, a core damage frequency was estimated about 6$$times$$10$$^{-9}$$/year by multiplying discrete hazard frequencies and conditional decay heat removal failure probabilities. The present study also developed the wind margin assessment methodology that the margin was regarded as wind speed leading to the decay heat removal failure.

Oral presentation

Research and development of margin assessment methodology of decay heat removal function against external hazards, 15; Progress in JFY2015 and event sequence assessment methodology against a combination hazard of strong wind and rainfall

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Takata, Takashi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Furukawa, Ryuta*; Geshi, Nobuo*; et al.

no journal, , 

PRA and margin assessment methodologies have been developed for sodium-cooled fast reactors against representative external hazards. This report describes the overview of last year (JPY2015) updates and the development of the sequence assessment methodology against a combination hazard of strong wind and rainfall.

16 (Records 1-16 displayed on this page)
  • 1