Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Nonhomologous end-joining repair plays a more important role than homologous recombination repair in defining radiosensitivity after exposure to high-LET radiation

Takahashi, Akihisa*; Kubo, Makoto*; Ma, H.*; Nakagawa, Akiko*; Yoshida, Yukari*; Isono, Mayu*; Kanai, Tatsuaki*; Ono, Tatsuya*; Furusawa, Yoshiya*; Funayama, Tomoo; et al.

Radiation Research, 182(3), p.338 - 344, 2014/09

 Times Cited Count:57 Percentile:90.66(Biology)

To clarify whether high-LET radiation inhibits all repair pathways or specifically one repair pathway, studies were designed to examine the effects of radiation with different LET values on DNA DSB repair and radiosensitivity. Embryonic fibroblasts bearing repair gene KO were exposed to X rays, carbon-, iron-, neon- and argon-ion beams. Cell survival was measured with colony-forming assays. The sensitization enhancement ratio (SER) values were calculated using the 10% survival dose of wild-type cells and repair-deficient cells. Cellular radiosensitivity was listed in descending order: double-KO cells $$>$$ NHEJ-KO cells $$>$$ HR-KO cells $$>$$ wild-type cells. Although HR-KO cells had an almost constant SER value, NHEJ-KO cells showed a high-SER value when compared to HR-KO cells, even with increasing LET values. These results suggest that with carbon-ion therapy, targeting NHEJ repair yields higher radiosensitivity than targeting homologous recombination repair.

1 (Records 1-1 displayed on this page)
  • 1