Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 153

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

IFMIF/EVEDA lithium test loop; Design and fabrication technology of target assembly as a key component

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Nakamura, Kazuyuki; Ida, Mizuho; Watanabe, Kazuyoshi; Kanemura, Takuji; Wakai, Eiichi; Horiike, Hiroshi*; Yamaoka, Nobuo*; et al.

Nuclear Fusion, 51(12), p.123008_1 - 123008_12, 2011/12

 Times Cited Count:37 Percentile:82.53(Physics, Fluids & Plasmas)

The Engineering Validation and Engineering Design Activity (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) is proceeded as one of the ITER Broader Approach (BA) activities. The EVEDA Li test loop (ELTL) is aimed at validating stability of the Li target and feasibility of a Li purification system as the key issues. In this paper, the design of the ELTL especially of a target assembly in which the Li target is produced by the contraction nozzle is presented.

Journal Articles

Present status of Japanese tasks for lithium target facility under IFMIF/EVEDA

Nakamura, Kazuyuki; Furukawa, Tomohiro; Hirakawa, Yasushi; Kanemura, Takuji; Kondo, Hiroo; Ida, Mizuho; Niitsuma, Shigeto; Otaka, Masahiko; Watanabe, Kazuyoshi; Horiike, Hiroshi*; et al.

Fusion Engineering and Design, 86(9-11), p.2491 - 2494, 2011/10

 Times Cited Count:10 Percentile:61.04(Nuclear Science & Technology)

In IFMIF/EVEDA, tasks for lithium target system are shared to 5 validation tasks (LF1-5) and a design task (LF6). The purpose of LF1 task is to construct and operate the EVEDA lithium test loop, and JAEA has a main responsibility to the performance of the Li test loop. LF2 is a task for the diagnostics of the Li test loop and IFMIF design. Basic research for the diagnostics equipment has been completed, and the construction for the Li test loop will be finished before March in 2011. LF4 is a task for the purification systems with nitrogen and hydrogen. Basic research for the purification equipment has been completed, and the construction of the nitrogen system for the Li test loop will be finished before March in 2011. LF5 is a task for the remote handling system with the target assembly. JAEA has an idea to use the laser beam for cutting and welding of the lip part of the flanges. LF6 is a task for the design of the IFMIF based on the validation experiments of LF1-5.

Journal Articles

Thermo-structural analysis of target assembly and back plate in the IFMIF/EVEDA lithium test loop

Watanabe, Kazuyoshi; Ida, Mizuho; Kondo, Hiroo; Miyashita, Makoto; Nakamura, Hiroo

Journal of Nuclear Materials, 417(1-3), p.1299 - 1302, 2011/10

 Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)

The Engineering Validation and Engineering Design Activity (EVEDA) of the International Fusion Materials Irradiation Facility (IFMIF) has been started under the Broader Approach Agreement. For the target assembly in the EVEDA Li test loop, two kinds of the back plates, "Integrated type" of SUS316L and "Bayonet type" of F82H, are going to be manufactured and tested. For thermo-structural design of the target assembly, we carried out thermo-structural analysis for these two types of the back plates by using the ABAQUS computer code. In the case of assuming thermal insulation for outer surface of the target assembly, the maximum stress of integrated type was 39.2 MPa, and that of Bayonet type was 340 MPa. These were lower than the permissible stress of their materials, therefore it was evaluated that insulation was effective against decreasing thermal stress.

Journal Articles

Target system of IFMIF-EVEDA in Japanese activities

Ida, Mizuho; Fukada, Satoshi*; Furukawa, Tomohiro; Hirakawa, Yasushi; Horiike, Hiroshi*; Kanemura, Takuji*; Kondo, Hiroo; Miyashita, Makoto; Nakamura, Hiroo; Sugiura, Hirokazu*; et al.

Journal of Nuclear Materials, 417(1-3), p.1294 - 1298, 2011/10

 Times Cited Count:3 Percentile:26.09(Materials Science, Multidisciplinary)

Engineering Validation and Engineering Design Activities (EVEDA) of the International Fusion Materials Irradiation Facility (IFMIF) was started. As a Japanese activity for the target system, EVEDA Lithium Test Loop simulating hydraulic and impurity conditions of IFMIF is under design and preparation for fabrication. Feasibility of thermo-mechanical structure of the target assembly and the replaceable back-plate made of F82H (a RAFM) and 316L (a stainless steel) is a key issue. Toward final validation on the EVEDA loop, diagnostics applicable to a high-speed free-surface Li flow and hot traps to control nitrogen and hydrogen in Li are under tests. For remote handling of target assemblies and the replaceable back-plates activated up to 50 dpa/y, lip weld on 316L-316L by laser and dissimilar weld on F82H-316L are under investigation. As engineering design of the IFMIF target system, water experiments and hydraulic/thermo-mechanical analyses of the back-plate are going.

Journal Articles

Development of measurement technique for surface waves on high-speed liquid lithium jet for IFMIF target

Kondo, Hiroo; Kanemura, Takuji*; Sugiura, Hirokazu*; Yamaoka, Nobuo*; Ida, Mizuho; Nakamura, Hiroo; Matsushita, Izuru*; Muroga, Takeo*; Horiike, Hiroshi*

Fusion Engineering and Design, 85(7-9), p.1102 - 1105, 2010/12

 Times Cited Count:12 Percentile:62.45(Nuclear Science & Technology)

This paper reports a measurement technique for surface waves on a liquid lithium jet for a Li target of the International Fusion Materials Irradiation Facility. The characteristic of the waves was successfully clarified by a contact-type liquid level detector. As a result, it was found that the wave distributions in the all jet velocity range up to 15 m/s were conformed each other in normalized form and Rayleigh distribution which is one of popular model to show irregular water wave.

Journal Articles

Design and construction of IFMIF/EVEDA lithium test loop

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Ida, Mizuho; Matsushita, Izuru*; Horiike, Hiroshi*; Kanemura, Takuji; Sugiura, Hirokazu*; Yagi, Juro*; Suzuki, Akihiro*; et al.

Journal of Engineering for Gas Turbines and Power, 133(5), p.052910_1 - 052910_6, 2010/12

 Times Cited Count:7 Percentile:38.87(Engineering, Mechanical)

As a major Japanese activity for the IFMIF/EVEDA, EVEDA Li Test Loop (ELTL) to simulate hydraulic and impurity conditions of IFMIF is under design and preparation for fabrication. Feasibility of hydraulic stability of the liquid Li target and the purification systems of hot traps are major key issues to be validated. This paper presents the current status of the design and construction of the EVEDA Li Test Loop. Detail designs of the loop components such as the target assembly, tanks, an electro-magnetic pump and flow meter and a cold trap for purification system are described in addition to the flow diagnostics system and the hot traps.

Journal Articles

Engineering design and construction of IFMIF/EVEDA lithium test loop; Design and fabrication of integrated target assembly

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Nakamura, Hiroo*; Ida, Mizuho; Watanabe, Kazuyoshi; Miyashita, Makoto*; Horiike, Hiroshi*; Yamaoka, Nobuo*; Kanemura, Takuji; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2010/10

The Engineering Validation and Engineering Design Activity (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) is proceeded as one of the ITER Broader Approach (BA) activities. The EVEDA Li test loop (ELTL) is aimed at validating stability of the Li target and feasibility of a Li purification system as the key issues. In this paper, the design of the ELTL especially of a target assembly in which the Li target is produced by the contraction nozzle is presented.

Journal Articles

Experimental study on fire-extinguishing of lithium

Furukawa, Tomohiro; Kato, Shoichi; Hirakawa, Yasushi; Kondo, Hiroo; Nakamura, Hiroo

Proceedings of 18th International Conference on Nuclear Engineering (ICONE-18) (CD-ROM), 6 Pages, 2010/05

The EVEDA lithium test loop is constructed at the Oarai Research and Development Center, Japan Atomic Energy Agency. Since lithium is specified as a dangerous substance by a Japanese law, the countermeasure which assumed the lithium combustion incident is indispensable. In this experimental study, the fire-extinguishing behavior of four kinds of fire extinguishers - dryness sand, pearlite, Natrex-L and Natrex-M - to burning lithium was examined. In addition, the effect of depth of lithium pool on the fire-extinguishing performance of the candidate fire extinguisher was investigated to determine the amount of the fire extinguisher placed at the EVEDA lithium test loop.

Journal Articles

Current status of design and construction of IFMIF/EVEDA lithium test loop

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Matsushita, Izuru*; Ida, Mizuho; Horiike, Hiroshi*; Kanemura, Takuji; Sugiura, Hirokazu*; Yagi, Juro*; Suzuki, Akihiro*; et al.

Proceedings of 18th International Conference on Nuclear Engineering (ICONE-18) (CD-ROM), 9 Pages, 2010/05

IFMIF is a neutron source aimed at producing an intense high energy neutron flux for testing candidate fusion reactor materials. Under Broader Approach activities, Engineering Validation and Engineering Design Activities (EVEDA) of IFMIF started on July 2007. Regarding to the lithium (Li) target facility, design and construction of EVEDA Li Test Loop is a major activity and is in progress. The detail design was started at the early 2009. Fabrication of the loop was started at middle of 2009, and completion is planned at the end of Feb. 2011.

Journal Articles

Tritium removal by Y hot trap for purification of IFMIF Li target

Edao, Yuki*; Fukada, Satoshi*; Yamaguchi, Sho*; Wu, Y.*; Nakamura, Hiroo

Fusion Engineering and Design, 85(1), p.53 - 57, 2010/01

 Times Cited Count:16 Percentile:72.46(Nuclear Science & Technology)

JAEA Reports

Basic experiment on fire-extinguishing of lithium

Kato, Shoichi; Furukawa, Tomohiro; Hirakawa, Yasushi; Kondo, Hiroo; Nakamura, Hiroo

JAEA-Technology 2009-059, 42 Pages, 2009/12

JAEA-Technology-2009-059.pdf:19.39MB

In order to obtain the engineering data of the lithium target system which is the neutron source of the International Fusion Material Irradiation Facility (IFMIF), design and fabrication of the liquid lithium test loop are carrying out under the Engineering Validation and Engineering Design Activity (EVEDA). Since lithium is specified as the dangerous substance by the Japanese law, the countermeasure which assumed the lithium combustion incident is indispensable. This report summarizes the results of basic experiment on fire-extinguishing of the lithium. In this experiment, the fire-extinguishing behavior of the fire extinguishers to the lithium was experimentally confirmed, and the fire extinguisher for the liquid lithium test loop is proposed. In addition, the fire-extinguishing performance for the determination of the amount of dispositions of the fire extinguisher was experimentally estimated.

Journal Articles

Development of remote handling technology of liquid lithium target and replaceable back plate with lip seal in IFMIF-EVEDA

Miyashita, Makoto; Furuya, Kazuyuki*; Ida, Mizuho; Nakamura, Hiroo

Fusion Engineering and Design, 84(7-11), p.1333 - 1338, 2009/06

 Times Cited Count:1 Percentile:10.23(Nuclear Science & Technology)

The IFMIF is an accelerator-based intense neutron source for testing candidate fusion materials. Intense neutrons equivalent to neutron irradiation damage of about 50 dpa/y are emitted inside the Li flow through a back-plate. Around the back plate, a lip seal made of 316L is welded by laser welding system for replacement by remote handling. The back plate will be designed for replacement at least every year. According to material tests of the lip seal weld joint, significant deterioration was not observed. Remote handling procedure of the back plate are examined. At first, rip seal joints of connection piping will be cut by the laser welding device and then the target assembly with the back plate will be moved to a hot cell. The back plate lip seal will be cut by the laser arm in the hot cell. And a new back plate will be welded and moved to test cell/target room. In the presentation, conceptual design of the laser cutting/welding device and remote handling procedure will be shown.

Journal Articles

Approach to the lifetime assessment of the bayonet back plate for IFMIF target

Agostini, P.*; Ida, Mizuho; Miccich$`e$, G.*; Nakamura, Hiroo; Turroni, P.*

Fusion Engineering and Design, 84(2-6), p.364 - 368, 2009/06

 Times Cited Count:4 Percentile:30.6(Nuclear Science & Technology)

In the International Fusion Materials Irradiation Facility (IFMIF), a back-plate of liquid lithium (Li) target is most severely irradiated by high flux of neutrons. The conceptual configuration of the IFMIF target, based on the bayonet back plate, has been developed. The life time analysis of the back-plate has to be made carefully, in order to credibly estimate its expected replacement frequency. The various interconnections between the main damaging causes were discussed in order to evidence the most plausible reasons of the back-plate malfunctioning. The results were as follows. Under IFMIF Li condition with nitrogen content of 10 wppm or less, the erosion/corrosion rate of the back-plate made of the reduced activation ferritic steel is 0.003 mm/year or less. Even in case that the Bragg peak of heat deposition by deuterons approaches to the back-plate by 1 mm, temperature of the back-plate increases by only 12 degrees or less, and induced fatigue load is well low. Thermal stress due to the neutron irradiation is 93 MPa at the back-plate center, which is well below the plastic limit. The positive shift in the ductile brittle transition temperature (DBTT), the most effective factor, reduces the back-plate lifetime to three months or shorter under irradiation damage rate of 60 dpa/year. However, the lifetime can be recovered by the post irradiation annealing heat treatment.

Journal Articles

Thickness distribution of high-speed free-surface lithium flow simulating IFMIF target

Kondo, Hiroo*; Kanemura, Takuji*; Sugiura, Hirokazu*; Yamaoka, Nobuo*; Miyamoto, Seiji*; Ida, Mizuho; Nakamura, Hiroo; Matsushita, Izuru*; Muroga, Takeo*; Horiike, Hiroshi*

Fusion Engineering and Design, 84(7-11), p.1086 - 1090, 2009/06

 Times Cited Count:8 Percentile:53.48(Nuclear Science & Technology)

A liquid lithium(Li) target of International Fusion Materials Irradiation Facility (IFMIF) is formed as flat plane free-surface flow by a nozzle and flows at high speed around 15 m/s. This paper focuses on flatness of the liquid Li target. A Li flow experiment was conducted in Osaka University Li Loop with a test section which was 1/2.5 scaled model of IFMIF. A thickness of the Li flow was measured and obtained by a contact method which was developed for the measurement. Analytical study on Kelvin wake and numerical calculation on wakes near side walls of the flow channel were also conducted and compared with the experimental results. As the results, positions of wake crest obtained from both of the experiment and numerical calculation assuming contact angle 140$$^{circ}$$ agreed well with an iso-phase line of the analytical model. Generation of the wake are likely depends on wettability between Li and a structural material which is 304SS in the present study.

Journal Articles

Development of velocity measurement on a liquid lithium flow for IFMIF

Sugiura, Hirokazu*; Kondo, Hiroo*; Kanemura, Takuji*; Niwa, Yuta*; Yamaoka, Nobuo*; Miyamoto, Seiji*; Ida, Mizuho; Nakamura, Hiroo; Matsushita, Izuru*; Muroga, Takeo*; et al.

Fusion Engineering and Design, 84(7-11), p.1803 - 1807, 2009/06

 Times Cited Count:3 Percentile:24.54(Nuclear Science & Technology)

To develop a diagnostics system in view of its application on International Fusion Materials Irradiation Facility (IFMIF) liquid lithium (Li) target, velocity measurements on a liquid Li flow were performed in a Li circulation loop at Osaka University with a test section having a contraction nozzle 1/2.5 scale of IFMIF and producing a flat plane jet of 70 mm width and 10 mm thickness. Based on the Particle Image Velocimetry (PIV) technique, a local Li flow velocity distribution was measured by tracking brightness intensity patterns of surface waves generated on the flow. Measured surface velocity showed good agreement with a surface velocity obtained in previous water experiments, and had an insignificant effect at an area corresponding to a deuteron beam irradiation area on the IFMIF target.

Journal Articles

Status of engineering design of liquid lithium target in IFMIF-EVEDA

Nakamura, Hiroo; Agostini, P.*; Ara, Kuniaki; Fukada, Satoshi*; Furuya, Kazuyuki*; Garin, P.*; Gessii, A.*; Giusti, D.*; Groeschel, F.*; Horiike, Hiroshi*; et al.

Fusion Engineering and Design, 84(2-6), p.252 - 258, 2009/06

 Times Cited Count:25 Percentile:83.37(Nuclear Science & Technology)

Journal Articles

Thermal-stress analysis of IFMIF target back-wall made of reduced-activation ferritic steel and austenitic stainless steel

Ida, Mizuho; Chida, Teruo; Furuya, Kazuyuki*; Wakai, Eiichi; Nakamura, Hiroo; Sugimoto, Masayoshi

Journal of Nuclear Materials, 386-388, p.987 - 990, 2009/04

 Times Cited Count:6 Percentile:41.12(Materials Science, Multidisciplinary)

To clarify IFMIF target back-wall structures and materials with acceptable thermal-stress and deformation due to nuclear heating during the accelerator operation, thermal-stress analysis was done using a code ABAQUS and data of nuclear heating. Two types of back-wall were estimated. One is made of only 316L, and the other is made of 316L at its circumference and F82H a RAF steel at center. Effects of stress-mitigation structure with thickness 2-8 mm, and beam heat loads of 10-100% were estimated. As a result, thermal-stress in the latter back-wall is acceptable level less than 328 MPa for 316L and 455 MPa for F82H even under full heat load, if thickness of the stress-mitigation part is more than 5 mm. On the contrary, thermal-stress in the former is not acceptable. In preliminary tensile tests on dissimilar welding (316L-F82H) specimen, the fracture was occurred in base metal of 316L. Therefore, this welding is expected to be employed as the back-wall.

Journal Articles

Mechanical properties of F82H/316L and 316L/316L welds upon the target back-plate of IFMIF

Furuya, Kazuyuki*; Ida, Mizuho; Miyashita, Makoto; Nakamura, Hiroo

Journal of Nuclear Materials, 386-388, p.963 - 966, 2009/04

 Times Cited Count:18 Percentile:76.39(Materials Science, Multidisciplinary)

The current material design of the IFMIF back wall in Japan consists of a stainless steel type-316L and F82H steel. The 316L and F82H are welded each other. The 316L region of the back wall is also welded with the target assembly made of 316L. Since the back-wall is operating under severe neutron irradiation condition (50 dpa/year), it is therefore important to perform metallurgical and mechanical tests for these welds. In result of the tests, significant issues were not found in the F82H/316L TIG-weld. On the other hand, although the 316L/316L YAG-weld offered the weld without any harmful weld defect, the hardness decreased somewhat in the fusion metal. The rupture occurred in the fusion metal, and the strength and elongation decreased somewhat. Furthermore, small dimples include several number of large voids were also seen in the fracture surface.

Journal Articles

Experimental investigation of the IFMIF target mock-up

Loginov, N.*; Mikheyev, A.*; Morozov, V.*; Aksenov, Y.*; Arnoldov, M.*; Berensky, L.*; Fedotovsky, V.*; Chernov, V.*; Nakamura, Hiroo

Journal of Nuclear Materials, 386-388, p.958 - 962, 2009/04

 Times Cited Count:6 Percentile:41.12(Materials Science, Multidisciplinary)

The IFMIF lithium target mock-ups have been constructed and tested at water and lithium test facilities. Jet velocity in both mock-ups was up to 20 m/s. Calculations and experiments showed instability of lithium flow at conjunction point of straight and concave sections of the mock-up back wall. Profile of water velocity across the mock-up width, jet thickness, and height of waves were measured. A significant increase of thickness of both water and lithium jets near the mock-up side walls was observed. The influence of shape of the nozzle outlet part on jet stability was investigated. Evaporation of lithium from the jet free surface was investigated as well as deposition of lithium on vacuum pipe walls of the target mock-up. It was showed that these phenomena are not so critical for the target efficiency. The possibility of removal of nitrogen in lithium down to 2ppm by means of aluminum getter was showed.

Journal Articles

Latest design of liquid lithium target in IFMIF

Nakamura, Hiroo; Agostini, P.*; Ara, Kuniaki; Cevolani, S.*; Chida, Teruo*; Ciotti, M.*; Fukada, Satoshi*; Furuya, Kazuyuki*; Garin, P.*; Gessii, A.*; et al.

Fusion Engineering and Design, 83(7-9), p.1007 - 1014, 2008/12

 Times Cited Count:17 Percentile:76.1(Nuclear Science & Technology)

This paper describes the latest design of liquid lithium target system in IFMIF. Design requirement of the Li target is to provide a stable Li jet with a speed of 20 m/s to handle an averaged heat flux of 1 GW/m$$^{2}$$. A double reducer nozzle and a concaved flow are applied to the target design. On Li purification, a cold trap and two kinds of hot trap are applied to control impurities below permissible levels. Nitrogen concentration shall be controlled below 10 wppm by one of the hot trap. Tritium concentration shall be controlled below 1 wppm by an yttrium hot trap. To maintain reliable continuous operation, various diagnostics are attached to the target assembly. Among the target assembly, a back-plate made of RAFM is located in the most severe region of neutron irradiation (50 dpa/y). Therefore, two design options of replaceable back wall and their remote handling systems are under investigation.

153 (Records 1-20 displayed on this page)