Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 110

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Experimental analysis of neutron and background $$gamma$$-ray energy spectra of 80-400 MeV $$^{7}$$Li(p,n) reactions under the quasi-monoenergetic neutron field at RCNP, Osaka University

Iwamoto, Yosuke; Sato, Tatsuhiko; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; Masuda, Akihiko*; Matsumoto, Tetsuro*; Iwase, Hiroshi*; Shima, Tatsushi*; Nakamura, Takashi*

EPJ Web of Conferences, 153, p.08019_1 - 08019_3, 2017/09

 Times Cited Count:0 Percentile:0.03(Nuclear Science & Technology)

To develop 100-400 MeV quasi-monoenergetic neutron field, we measured neutron and unexpected $$gamma$$-ray energy spectra of the $$^{7}$$Li(p,n) reaction with 80-389 MeV protons in the 100-m time-of-flight (TOF) tunnel at the Research Center for Nuclear Physics (RCNP). Neutron energy spectra with energies above 3 MeV were measured by the TOF method and $$gamma$$ energy spectra with energies above 0.1 MeV were measured by the automatic unfolding function of the radiation dose monitor DARWIN. For neutron spectra, the contribution of peak intensity to the total intensity integrated with energies above 3 MeV varied between 0.38 and 0.48. For $$gamma$$-ray spectra, high-energetic $$gamma$$-rays at around 70 MeV originated from the decay of $$pi$$$$^{0}$$ were observed over 200 MeV. For the 246-MeV proton incident reaction, the contribution of $$gamma$$-ray dose to neutron dose is negligible because the ratio of $$gamma$$-ray to neutron is 0.014.

Journal Articles

Characterization of the PTW 34031 ionization chamber (PMI) at RCNP with high energy neutrons ranging from 100 - 392 MeV

Theis, C.*; Carbonez, P.*; Feldbaumer, E.*; Forkel-Wirth, D.*; Jaegerhofer, L.*; Pangallo, M.*; Perrin, D.*; Urscheler, C.*; Roesler, S.*; Vincke, H.*; et al.

EPJ Web of Conferences, 153, p.08018_1 - 08018_5, 2017/09

 Times Cited Count:0 Percentile:0.03(Nuclear Science & Technology)

At CERN, gas-filled ionization chambers PTW-34031 (PMI) are commonly used in radiation fields including neutrons, protons and $$gamma$$-rays. A response function for each particle is calculated by the radiation transport code FLUKA. To validate a response function to high energy neutrons, benchmark experiments with quasi mono-energetic neutrons have been carried out at RCNP, Osaka University. For neutron irradiation with energies below 200 MeV, very good agreement was found comparing the FLUKA simulations and the measurements. In addition it was found that at proton energies of 250 and 392 MeV, results calculated with neutron sources underestimate the experimental data due to a non-negligible gamma component originating from the target $$^{7}$$Li(p,n)Be reaction.

Journal Articles

Shielding experiments of concrete and iron for the 244 MeV and 387 MeV quasi-mono energetic neutrons using a Bonner sphere spectrometer (at RCNP, Osaka Univ.)

Matsumoto, Tetsuro*; Masuda, Akihiko*; Nishiyama, Jun*; Iwase, Hiroshi*; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; Yashima, Hiroshi*; Shima, Tatsushi*; et al.

EPJ Web of Conferences, 153, p.08016_1 - 08016_3, 2017/09

 Times Cited Count:1 Percentile:61.21(Nuclear Science & Technology)

Neutron energy spectra behind concrete and iron shields were measured for quasi-monoenergetic neutrons above 200 MeV using a Bonner sphere spectrometer (BSS). Quasi-monoenergetic neutrons were produced by the $$^{7}$$Li(p,xn) reaction with 246-MeV and 389-MeV protons. The response function of BSS was also measured at neutron energies from 100 MeV to 387 MeV. In data analysis, the measured response function was used and the multiple neutron scattering effect between the BSS and the shielding material was considered. The neutron energy spectra behind the concrete and iron shields were obtained by the unfolding method using the MAXED code. Ambient dose equivalents were obtained as a function of a shield thickness successfully. For the case of the 244 MeV neutron incidence, the multiple neutron scattering effect on the effective dose is large under 50 cm thickness of the concrete shield.

Journal Articles

Neutron spectrometry and dosimetry in 100 and 300 MeV quasi-mono-energetic neutron field at RCNP, Osaka University, Japan

Mares, V.*; Trinkl, S.*; Iwamoto, Yosuke; Masuda, Akihiko*; Matsumoto, Tetsuro*; Hagiwara, Masayuki*; Satoh, Daiki; Yashima, Hiroshi*; Shima, Tatsushi*; Nakamura, Takashi*

EPJ Web of Conferences, 153, p.08020_1 - 08020_3, 2017/09

 Times Cited Count:5 Percentile:93.93(Nuclear Science & Technology)

To validate response of an extended range Bonner Sphere Spectrometer (ERBSS) with $$^{3}$$He proportional counter, neutron energy spectra were measured using an ERBSS in the quasi-mono-energetic neutron field at the Research Center for Nuclear Physics (RCNP). Using 100 MeV and 296 MeV proton beams, neutron fields with nominal peak energies of 96 MeV and 293 MeV were generated via $$^{7}$$Li(p,n)$$^{7}$$Be reactions. The energy spectra were measured at a distance of 35 m from the target. To deduce the corresponding neutron spectra from thermal to the nominal maximum energy, the ERBSS data were unfolded using the MSANDB unfolding code. At high energies, the neutron spectra were also measured by means of the TOF method using NE213 organic liquid scintillators. The agreement between ERBSS and TOF neutron spectra above 5 MeV is very good. Comparison in terms of ambient dose equivalent, H$$^{*}$$(10) between ERBSS and TOF values for both proton energies shows very good agreement.

Journal Articles

Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility

Masuda, Akihiko*; Matsumoto, Tetsuro*; Iwamoto, Yosuke; Hagiwara, Masayuki*; Satoh, Daiki; Sato, Tatsuhiko; Iwase, Hiroshi*; Yashima, Hiroshi*; Nakane, Yoshihiro; Nishiyama, Jun*; et al.

Nuclear Instruments and Methods in Physics Research A, 849, p.94 - 101, 2017/03

 Times Cited Count:1 Percentile:10.62(Instruments & Instrumentation)

Quasi-monoenergetic high-energy neutron fields induced by $$^{7}$$Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Through this study, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.

Journal Articles

Characterization of high-energy quasi-monoenergetic neutron energy spectra and ambient dose equivalents of 80-389 MeV $$^{7}$$Li(p,n) reactions using a time-of-flight method

Iwamoto, Yosuke; Hagiwara, Masayuki*; Satoh, Daiki; Araki, Shohei*; Yashima, Hiroshi*; Sato, Tatsuhiko; Masuda, Akihiko*; Matsumoto, Tetsuro*; Nakao, Noriaki*; Shima, Tatsushi*; et al.

Nuclear Instruments and Methods in Physics Research A, 804, p.50 - 58, 2015/12

 Times Cited Count:23 Percentile:87.12(Instruments & Instrumentation)

We have measured neutron energy spectra for the 80, 100 and 296 MeV proton incident reactions at the RCNP cyclotron facility using time-of-flight method. The neutron energy spectrum consisted of the peak and continuum parts and the peak intensity was 0.9-1.1 $$times$$ 10$$^{10}$$ neutrons/sr/$$mu$$C. The ratio of peak intensity of the spectrum to the total intensity was between 0.38 and 0.48. To consider the correction required to derive a response in the peak region from the measured total response for neutron monitors, we proposed the subtraction method using energy spectra between 0$$^{circ}$$ and 25$$^{circ}$$. The normalizing factor k against the 25$$^{circ}$$ neutron fluence that equalizes the 0$$^{circ}$$ neutron fluence in the continuum region was from 0.74 to 1.02. With our previous results, we have obtained data for characterization of monoenergetic neutron field for the $$^{7}$$Li(p,n) reaction with 80$$sim$$389 MeV protons at the RCNP cyclotron facility.

Journal Articles

Activation, Radiation shielding materials

Sukegawa, Atsuhiko; Iida, Hiromasa*; Itoga, Toshio*; Okumura, Keisuke; Kai, Tetsuya; Konno, Chikara; Nakashima, Hiroshi; Nakamura, Takashi*; Ban, Shuichi*; Yashima, Hiroshi*; et al.

Hoshasen Shahei Handobukku; Kisohen, p.299 - 356, 2015/03

no abstracts in English

Journal Articles

Quasi-monoenergetic neutron beam and its application at the RCNP cyclotron facility

Iwamoto, Yosuke; Yashima, Hiroshi*; Satoh, Daiki; Hagiwara, Masayuki*; Iwase, Hiroshi*; Nakamura, Takashi*; Shima, Tatsushi*; Tamii, Atsushi*; Hatanaka, Kichiji*

IAEA-TECDOC-1743, Annex (CD-ROM), p.177 - 188, 2014/07

A quasi-monoenergetic neutron field using $$^{7}$$Li(p,n) reaction for the higher energy range of 100 to 400 MeV has been developed at the RCNP cyclotron facility of Osaka University. The neutron energy spectra at angles from 0$$^{circ}$$ to 30$$^{circ}$$ have been investigated for the proton beams with the energies of 140, 250, 350 and 392 MeV. The highest neutron fluence reaches 1.0 $$times$$ 10$$^{10}$$ n/sr/$$mu$$C, and the contribution of peak intensity to the total intensity varied between 0.4 and 0.5. Using the quasi-monoenergetic neutron beam, measurement of neutron induced activation cross sections, elastic scattering cross sections for neutron and a shielding benchmark experiment have been performed, successfully. Thus quasi-monoenergetic neutron field at RCNP are suitable for measurement of nuclear data, shielding experiments and the calibration of monitors in the energy region from 100 to 400 MeV.

Journal Articles

Characterization of quasi-monoenergetic neutron source using 137, 200, 246 and 389 MeV $$^{7}$$Li(p,n) reactions

Iwamoto, Yosuke; Hagiwara, Masayuki*; Iwase, Hiroshi*; Yashima, Hiroshi*; Satoh, Daiki; Matsumoto, Tetsuro*; Masuda, Akihiko*; Pioch, C.*; Mares, V.*; Shima, Tatsushi*; et al.

Progress in Nuclear Science and Technology (Internet), 4, p.657 - 660, 2014/04

The authors measured the neutron energy spectra of the proton incident reaction on the lithium target with 137, 200, 246 and 389 MeV protons at several angles (0$$^{circ}$$, 2.5$$^{circ}$$, 5$$^{circ}$$, 10$$^{circ}$$, 15$$^{circ}$$, 20$$^{circ}$$, 25$$^{circ}$$ and 30$$^{circ}$$), using a time-of-flight (TOF) method employing organic scintillators NE213 at the Research Center for Nuclear Physics (RCNP) of Osaka University. For the neutron energy spectrum at 0$$^{circ}$$, the ratio of the peak neutron intensity to the total one varied between 0.4 and 0.5 depending on the incident energy. In order to consider the correction required to derive the response in the peak region from the measured total response for high-energy neutron detectors, the authors showed the subtractions of H*(10) obtained at larger angles from the 0$$^{circ}$$ data in the continuum part. It was found that subtracting the dose equivalent at about 22$$^{circ}$$ from the 0$$^{circ}$$ data reduces the continuum component most efficiency.

Journal Articles

Measurement of neutron energy spectra behind shields for quasi-monoenergetic neutrons generated by 246-MeV and 389-MeV protons using a Bonner sphere spectrometer

Matsumoto, Tetsuro*; Masuda, Akihiko*; Nishiyama, Jun*; Harano, Hideki*; Iwase, Hiroshi*; Iwamoto, Yosuke; Hagiwara, Masayuki*; Satoh, Daiki; Yashima, Hiroshi*; Nakane, Yoshihiro; et al.

Progress in Nuclear Science and Technology (Internet), 4, p.332 - 336, 2014/04

Recently, many high-energy accelerators are used for various fields. Shielding data for high-energy neutrons are therefore very important from the point of view of radiation protection in high energy accelerator facilities. However, the shielding experimental data for high energy neutrons above 100 MeV are very poor both in quality and in quantity. In this study, neutron penetration spectral fluence and ambient dose through iron and concrete shields were measured with a Bonner sphere spectrometer (BSS). Quasi-monoenergetic neutrons were produced by the $$^{7}$$Li(p,xn) reaction by bombarding a 1-cm thick Li target with 246-MeV and 389-MeV protons in the Research Center for Nuclear Physics (RCNP) of the Osaka University. Shielding materials are iron blocks with a thickness from 10 cm to 100 cm and concrete blocks with a thickness from 25 cm to 300 cm.

Journal Articles

Shielding benchmark experiment using hundreds of MeV quasi-monoenergetic neutron source by a large organic scintillator

Hagiwara, Masayuki*; Iwase, Hiroshi*; Iwamoto, Yosuke; Satoh, Daiki; Matsumoto, Tetsuro*; Masuda, Akihiko*; Yashima, Hiroshi*; Nakane, Yoshihiro; Nakashima, Hiroshi; Sakamoto, Yukio; et al.

Progress in Nuclear Science and Technology (Internet), 4, p.327 - 331, 2014/04

We have developed several hundreds of MeV p-$$^{7}$$Li quasi-monoenergetic neutron fields in the Research Center for Nuclear Physics (RCNP), Osaka University, Japan. In this study, we extended the measurements to higher energy with a p-$$^{7}$$Li quasi-monoenergetic neutron source, which was produced from a 1.0-cm-thick lithium target bombarded with 246 and 389 MeV protons, using a larger NE213 scintillator of 25.4-cm in diameter and 25.4-cm in thickness. The large NE213 have good energy resolution for high energy neutrons, because it can stop recoil protons up to 180 MeV. The measured data are compared with the Monte-Carlo codes (PHITS with JENDL-HE data library) in the energy spectra, time spectra and the attenuation length of the peak neutrons. This comparison shows good agreement between experiments and calculations. The attenuation length estimated from the well-fitted curves with single exponential form will be useful for the practical shielding design of high energy accelerator facilities.

Journal Articles

Response measurement of various neutron dose equivalent monitors in 134-387 MeV neutron fields

Nakane, Yoshihiro; Hagiwara, Masayuki*; Iwamoto, Yosuke; Iwase, Hiroshi*; Satoh, Daiki; Sato, Tatsuhiko; Yashima, Hiroshi*; Matsumoto, Tetsuro*; Masuda, Akihiko*; Nunomiya, Tomoya*; et al.

Progress in Nuclear Science and Technology (Internet), 4, p.704 - 708, 2014/04

no abstracts in English

Journal Articles

Activation detector measurements at the hadron absorber of the NuMI neutrino beamline at Fermilab

Matsuda, Norihiro; Kasugai, Yoshimi; Matsumura, Hiroshi*; Iwase, Hiroshi*; Toyoda, Akihiro*; Yashima, Hiroshi*; Sekimoto, Shun*; Oishi, Koji*; Sakamoto, Yukio*; Nakashima, Hiroshi; et al.

Progress in Nuclear Science and Technology (Internet), 4, p.337 - 340, 2014/04

The Neutrinos at the Main Injector (NuMI) at Fermilab produces intense neutrino beam to investigate the phenomena of the neutrino mixing and oscillation. The Hadron Absorber, consists of thick blocks of aluminum, iron and concrete, is placed at the end of decay volume as a dump for primary proton and secondary particles generated in NuMI. In order to estimate the shielding effect, the reaction rate measurements with activation detector were carried out on the back surface of the absorber. The induced activities in the detectors were measured by analyzing their $$gamma$$-ray spectra using HPGe detectors. Two kind of peak was showed on two-dimensional distributions of obtained reaction rates at right angle to the beam direction. One was strong peaks at the both horizontal side. And, another smaller was at the top. It was concluded that these peaks were the results of particles streaming through the gaps in the Hadron Absorber shielding.

Journal Articles

Measurements and Monte Carlo calculations of forward-angle secondary-neutron-production cross-sections for 137 and 200 MeV proton-induced reactions in carbon

Iwamoto, Yosuke; Hagiwara, Masayuki*; Matsumoto, Tetsuro*; Masuda, Akihiko*; Iwase, Hiroshi*; Yashima, Hiroshi*; Shima, Tatsushi*; Tamii, Atsushi*; Nakamura, Takashi*

Nuclear Instruments and Methods in Physics Research A, 690, p.10 - 16, 2012/10

 Times Cited Count:4 Percentile:31.96(Instruments & Instrumentation)

Secondary neutron-production double-differential cross sections (DDXs) have been measured from interactions of 137 MeV and 200 MeV protons in a natural carbon target. The data were measured between 0$$^{circ}$$ and 25$$^{circ}$$ in the laboratory. Benchmark calculations were carried out with the PHITS code using the evaluated nuclear data files of JENDL/HE-2007 and ENDF/B-VII, and the theoretical models of Bertini-GEM and ISOBAR-GEM. For the 137 MeV proton incidence, calculations using JENDL/HE-2007 generally reproduced the shape and the amount of experimental spectra well including the ground state of the $$^{12}$$N state produced by the $$^{12}$$C(p,n)$$^{12}$$N reaction. ISOBAR predicts the nucleon emission to the forward angles qualitatively better than the Bertini model and JENDL/HE-2007. These experimental data will be useful to evaluate the carbon data and as benchmark data for investigating the validity of the Monte Carlo simulation for the shielding design of accelerator facilities.

Journal Articles

Fitting method for spectrum deduction in high-energy neutron field induced by GeV-protons using experimental reaction-rate data

Kasugai, Yoshimi; Matsuda, Norihiro; Sakamoto, Yukio; Nakashima, Hiroshi; Yashima, Hiroshi*; Matsumura, Hiroshi*; Iwase, Hiroshi*; Hirayama, Hideo*; Mokhov, N.*; Leveling, A.*; et al.

Reactor Dosimetry; 14th International Symposium (ASTM STP 1550), p.675 - 689, 2012/08

Under the collaborative study project of JASMIN, shielding experiments has been carried out using the anti-proton target station (Pbar) of Fermilab. In the experiment, the multi-foil activation technique was utilized, and the neutron spectra in high-energy region between 1 and 100 MeV were deduced by using the "fitting method", which is newly developed. In this method, we made an assumption that neutron energy spectra could be expressed with a simple function. The validity of the fitting method was confirmed by comparison with the results of the unfolding method and the theoretical calculations. Finally, it was found that there are simple correlations between reaction rates and the adjusting parameters in the fitting function. The correlations are useful for estimating the adjusting parameters easily, and a neutron spectrum in the high-energy region can be deduced from a set of reaction-rate data without the complicated calculations of unfolding.

Journal Articles

Response measurement of a Bonner sphere spectrometer for high-energy neutrons

Masuda, Akihiko*; Matsumoto, Tetsuro*; Harano, Hideki*; Nishiyama, Jun*; Iwamoto, Yosuke; Hagiwara, Masayuki*; Satoh, Daiki; Iwase, Hiroshi*; Yashima, Hiroshi*; Nakamura, Takashi*; et al.

IEEE Transactions on Nuclear Science, 59(1), p.161 - 166, 2012/02

 Times Cited Count:12 Percentile:66.54(Engineering, Electrical & Electronic)

In this study, responses of Bonner sphere spectrometer (BSS) for 245 and 388 MeV neutrons was measured at RCNP, Osaka University. The neutrons are generated in the $$^{7}$$Li(p,n) reaction and its spectra consist of a high-energy peak and a continuum down to the low energy. Therefore, the observed counts of BSS caused by the continuum need to be subtracted. Adjusting a Li target angle and a collimator position, 0 deg and 30 deg component of generated neutron are available. While the 0 deg component contains both the peak and the continuum, the 30 deg component is considered to contain only the continuum. Therefore, the response of the peak is obtained. The spectra were measured using the time-of-flight (TOF) method with a NE213 scintillator.

Journal Articles

Evaluation of dose rate reduction in a spacecraft compartment due to additional water shield

Sato, Tatsuhiko; Niita, Koji*; Shurshakov, V. A.*; Yarmanova, E. N.*; Nikolaev, I. V.*; Iwase, Hiroshi*; Sihver, L.*; Mancusi, D.*; Endo, Akira; Matsuda, Norihiro; et al.

Cosmic Research, 49(4), p.319 - 324, 2011/08

 Times Cited Count:11 Percentile:60.36(Engineering, Aerospace)

HZE particle transport codes are the indispensable tool in the shielding design of spacecrafts. We are therefore developing a general-purpose Monte Carlo code PHITS, which can deal with the transports of all kinds of hadrons and heavy ions with energies up to 200 GeV/n in 3-dimensional phase spaces. The applicability of PHITS to space researches has been well verified by comparing the neutron spectra in spacecrafts calculated by the code with the corresponding experimental data. Recently, PHITS was employed in the estimation of radiation fields in the Russian Service Module in ISS. The results of the estimation indicate that PHITS can reproduce experimental data of the dose reduction rates due to water shielding attached on the wall of the Russian crew cabin fairly well. The details of the calculation procedures will be given in the presentation, together with the results of other applications of PHITS to the space exploration.

Journal Articles

Shielding experiments under JASMIN collaboration at Fermilab, 4; Measurement and analyses of high-energy neutron spectra in the anti-proton target station

Matsuda, Norihiro; Kasugai, Yoshimi; Sakamoto, Yukio; Nakashima, Hiroshi; Matsumura, Hiroshi*; Iwase, Hiroshi*; Kinoshita, Norikazu*; Hirayama, Hideo*; Yashima, Hiroshi*; Mokhov, N.*; et al.

Journal of the Korean Physical Society, 59(2), p.2055 - 2058, 2011/08

 Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)

It is important to obtain neutron spectra and its intensity on shielding experiment. Deduction of high-energy neutron spectra were done using fitting and unfolding methods based on the shielding data obtained at the anti-proton (pbar) target station in Fermilab. The neutron spectra for fitting method is useful to be easily obtained and the values gave reasonable results compared with nuclear data. Therefore, that for unfolding methods included inconsistency. Furthermore, the deduced neutron spectra were verified through the calculation analyses by PHITS code.

Journal Articles

Characterisation of quadi-monoenergetic neutron energy spectra using $$^{7}$$Li(p,n) reactions at 246-389 MeV

Iwamoto, Yosuke; Hagiwara, Masayuki*; Satoh, Daiki; Iwase, Hiroshi*; Yashima, Hiroshi*; Itoga, Toshiro*; Sato, Tatsuhiko; Nakane, Yoshihiro; Nakashima, Hiroshi; Sakamoto, Yukio; et al.

Proceedings of 10th Meeting of the Task Force on Shielding Aspects of Accelerators, Targets and Irradiation Facilities (SATIF-10), p.53 - 61, 2011/03

The neutron energy spectra penetrating 10 to 100 cm thick iron and 25 to 200 cm thick concrete shields have been measured using 138, 243 and 387 MeV quasi-monoenergetic neutron sources at the Research Center for Nuclear Physics (RCNP) facility, Osaka University. The source neutrons were produced from a 1 cm thick lithium target bombarded with 140, 245 and 388 MeV protons. Two types of NE213 liquid organic scintillators and Bonner ball neutron spectrometers were used for the neutron energy spectrum measurement. The TOF and unfolding methods were applied to estimate the energy spectra behind the shield in the peak energy region and continuous energy region, respectively. We have also measured the neutron energy spectra and angular distribution of the source neutron above 1 MeV in the angular range from 0$$^{circ}$$ to 30$$^{circ}$$ with the TOF method. All measured data were compared with the PHITS Monte Carlo calculations.

Journal Articles

Experimental method for neutron elastic scattering cross-section measurement in intermediate energy region at RCNP

Satoh, Daiki; Iwamoto, Yosuke; Hagiwara, Masayuki*; Iwase, Hiroshi*; Yashima, Hiroshi*; Sanami, Toshiya*; Sato, Tatsuhiko; Endo, Akira; Sakamoto, Yukio; Nakane, Yoshihiro; et al.

Progress in Nuclear Science and Technology (Internet), 1, p.20 - 23, 2011/02

An experimental method and data processing procedure have been developed for the measurement of neutron elastic scattering cross sections in intermediate energy region above 100 MeV. The data were obtained at Research Center for Nuclear Physics (RCNP) in Osaka University by utilizing a $$^{7}$$Li(p,n) quasi-monoenergetic neutron source and Time-of-Flight (TOF) technique.

110 (Records 1-20 displayed on this page)