Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 65

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Validation of the hybrid turbulence model in detailed thermal-hydraulic analysis code SPIRAL for fuel assembly using sodium experiments data of 37-pin bundles

Yoshikawa, Ryuji; Imai, Yasutomo*; Kikuchi, Norihiro; Tanaka, Masaaki; Ohshima, Hiroyuki

Nuclear Technology, 210(5), p.814 - 835, 2024/05

In the study of safety enhancement on advanced sodium-cooled fast reactor, it is essential to clarify the thermal-hydraulics under various operation conditions in a fuel assembly (FA) with the wire-wrapped fuel pins to assess the structural integrity of the fuel pin. A finite element thermal-hydraulics analysis code named SPIRAL has been developed to analyze the detailed thermal-hydraulics phenomena in a FA. In this study, the numerical simulations of the 37-pin bundle sodium experiments at different Re number conditions, including a transitional condition between laminar and turbulent flows and turbulent flow conditions, were performed to validate the hybrid turbulence model equipped in SPIRAL. The temperature distributions predicted by SPIRAL was consistent with those measured in the experiments. Through the validation study, the applicability of the hybrid turbulence model in SPIRAL to thermal-hydraulic evaluation of sodium-cooled FA in the wide range of Re number was confirmed.

Journal Articles

Validation study of thermal-hydraulics analysis code SPIRAL to a large-scale wire-wrapped fuel assembly sodium test at a low Reynolds number flow regime

Yoshikawa, Ryuji; Imai, Yasutomo*; Kikuchi, Norihiro; Tanaka, Masaaki; Gerschenfeld, A.*

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05

Removal of core decay heat by utilizing natural circulation is expected as a significant measure to enhance the safety of sodium-cooled fast reactors (SFRs). Accurate evaluation of the temperature distribution in the fuel assembly (FA) at the low Re regime in natural circulation operation is demanded. A detailed thermal-hydraulics analysis code named SPIRAL has been developed to clarify thermal-hydraulic phenomena in the FA at various operation conditions. In this study, SPIRAL with the hybrid turbulence model was applied to analyze a large-scale fuel assembly experiment of a 91-pin bundle for two cases at the mixed and the natural convection conditions respectively in low Re regime with heat transfer from outside of the FA. The applicability of the SPIRAL to the thermal-hydraulics evaluation of FA at mixed and natural convection conditions was confirmed by the comparisons of temperatures predicted by SPIRAL with those measured in the experiment.

Journal Articles

Development of reactor vessel thermal-hydraulic analysis method in natural circulation conditions with coarse-mesh subchannel CFD model

Hamase, Erina; Miyake, Yasuhiro*; Imai, Yasutomo*; Doda, Norihiro; Ono, Ayako; Tanaka, Masaaki

Proceedings of 13th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-13) (Internet), 12 Pages, 2022/09

To enhance the safety of sodium-cooled fast reactors, the natural circulation (NC) decay heat removal systems with a dipped-type direct heat exchanger (D-DHX) have been investigated. During the D-DHX operation, since the core-plenum interaction occurs, development of the reactor vessel model including the more model by using a computational fluid dynamics code (RV-CFD) is required. Previously, the CFD model based on the subchannel analysis was developed. In this study, to achieve much lower computational cost maintaining the prediction accuracy, the coarse-mesh subchannel CFD (CMSC) model has been developed and was incorporated into the core of RV-CFD. As a result of PLANDTL-1 test analysis, the RV-CFD with the CMSC model can reproduce the radial heat transfer under NC conditions.

Journal Articles

Core thermal-hydraulics analysis during dipped-type direct heat exchanger operation in natural circulation conditions

Hamase, Erina; Miyake, Yasuhiro*; Imai, Yasutomo*; Doda, Norihiro; Ono, Ayako; Tanaka, Masaaki

Mechanical Engineering Journal (Internet), 9(4), p.21-00438_1 - 21-00438_15, 2022/08

To enhance the safety of sodium-cooled fast reactors, a dipped-type direct heat exchanger (D-DHX) has been investigated in a natural circulation decay heat removal system. During the D-DHX operation, the core-plenum interactions occurs and the thermal-hydraulics in the reactor vessel (RV) is complicated, the establishment of thermal-hydraulic analysis model in the RV for computational fluid dynamics code (RV-CFD) is required to simulate the thermal stratification in the upper plenum and thermal-hydraulics in the core. In this study, in terms of using RV-CFD for design study, the subchannel CFD model with low computational cost was adopted to the core of RV-CFD and the numerical simulation was carried out in comparison with the measured data in the sodium test facility named PLANDTL-1. As the result, the calculated sodium temperature in the core had good agreement with the experimental result and the applicability of the RV-CFD for the core-plenum interactions was confirmed.

Journal Articles

Development of evaluation method of gas entrainment on the free surface in the reactor vessel in pool-type sodium-cooled fast reactors; Gas entrainment judgment based on three-dimensional evaluation of vortex center line and distribution of pressure decrease

Matsushita, Kentaro; Ezure, Toshiki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Tanaka, Masaaki

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 8 Pages, 2022/08

Development of evaluation method for cover gas entrainment (GE) by vortices generated at free surface in upper plenum of sodium-cooled fast reactor (SFR) is required. GE evaluation tool, named StreamViewer, based on method using numerical results of three-dimensional computational fluid dynamics analysis for loop-type SFRs has been developed. In this study, modification of evaluation method of StreamViewer to rationalize conservativeness in evaluation results was examined by identifying vortex center lines and calculating three-dimensional distribution of pressure decrease along vortex center lines. The applicability of modified method was checked using water experimental result in rectangular open channel where unsteady vortices are generated. As the result, it was indicated that evaluation results on gas core depth which were excessive in current method were improved in modified method, and it is confirmed that modified method may discriminate onset of GE with appropriate criteria.

Journal Articles

Development of analysis method of gas entrainment phenomena from free surface due to unsteady vortex (Evaluation of three-dimensional distribution of reduction of pressure and identification of unsteady vortex center line)

Matsushita, Kentaro; Ezure, Toshiki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Tanaka, Masaaki

Nihon Kikai Gakkai Kanto Shibu Ibaraki Koenkai 2021-Nendo Koen Rombunshu (Internet), 4 Pages, 2021/08

For evaluation of gas entrainment phenomenon at free surface in reactor vessel of sodium-cooled fast reactor, the gas entrainment evaluation tool named "Stream Viewer" has been developed. In Stream Viewer, depth of surface vortex dimple is predicted by calculating pressure decrease at the vortex center using velocity distribution around the vortex and Burgers vortex model. In this report, a method to identify continuous vortex center lines from a velocity distribution is newly developed. It becomes possible to evaluate three-dimensional distribution of pressure decrease along vortex center line. Then, the method is validated by applying Stream Viewer to an open channel experiment. As the result, it was confirmed that vortex center lines were successfully identified by the improved Stream Viewer. Moreover, it was also shown that the evaluation accuracy of gas entrainment was expected to be improved by considering distribution of pressure decrease along vortex center line.

Journal Articles

Investigation of applicability of subchannel analysis code ASFRE on thermal hydraulics analysis in fuel assembly with inner duct structure in sodium cooled fast reactor

Kikuchi, Norihiro; Imai, Yasutomo*; Yoshikawa, Ryuji; Doda, Norihiro; Tanaka, Masaaki

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 8 Pages, 2021/08

In the design study of an advanced sodium-cooled fast reactor (Advanced-SFR) in JAEA, the use of a specific fuel assembly (FA) with an inner duct structure called FAIDUS has been investigated to enhance safety of Advanced-SFR. Due to the asymmetric layout of fuel rods by the inner duct, it is necessary to estimate the temperature distribution to confirm feasibility of FAIDUS. For the FAIDUS, confirmation of validity of the numerical results by a subchannel analysis code named ASFRE was not enough because the reference data on the thermal hydraulics in FAIDUS have not been obtained by the mock-up experiment, yet. Therefore, the code-to-code comparisons with numerical results of ASFRE and those of a CFD code named SPIRAL was conducted. The applicability of ASFRE was indicated through the confirmation of the consistency of mechanism of the specific temperature and velocity distributions appearing around the inner duct between the numerical results by ASFRE and those by SPIRAL.

Journal Articles

Core thermal-hydraulic analysis during dipped-type direct heat exchanger operation in natural circulation conditions

Hamase, Erina; Doda, Norihiro; Ono, Ayako; Tanaka, Masaaki; Miyake, Yasuhiro*; Imai, Yasutomo*

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 10 Pages, 2021/08

To enhance the safety of sodium-cooled fast reactors, a dipped-type direct heat exchanger (D-DHX) has been investigated in a natural circulation decay heat removal system. During the D-DHX operation, the core-plenum interactions occurs, therefore, a thermal-hydraulic analysis model in the reactor vessel for computational fluid dynamics code (RV-CFD model) is necessarily required. In this study, the application of the subchannel analysis method for subassemblies to the RV-CFD model was attempted to reduce the calculation costs. Analysis results were compared to the experimental data obtained in the sodium experimental apparatus PLANDTL-1. As the result, the behavior of cold sodium into the simulated core was well grasped and the calculated sodium temperature in the core had good agreement with the experimental result. The applicability of the RV-CFD model was confirmed.

Journal Articles

Validation study of finite element thermal-hydraulics analysis code SPIRAL to a large-scale wire-wrapped fuel assembly at low flow rate condition

Yoshikawa, Ryuji; Imai, Yasutomo*; Kikuchi, Norihiro; Tanaka, Masaaki; Gerschenfeld, A.*

Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.73 - 80, 2020/10

A finite element thermal-hydraulics simulation code SPIRAL has been developed in Japan Atomic Energy Agency (JAEA) to analyze the detailed thermal-hydraulics phenomena in a fuel assembly (FA) of Sodium-cooled Fast Reactors (SFRs). The numerical simulation of a large-scale sodium test for 91-pin bundle (GR91) at low flow rate condition was performed for the validation of SPIRAL with the hybrid k-e turbulence model to take into account the low Re number effect near the wall in the flow and temperature fields. Through the numerical simulation, specific velocity distribution affected by the buoyancy force was shown on the top of the heated region and the temperature distribution predicted by SPIRAL agreed with that measured in the experiment and the applicability of the SPIRAL to thermal-hydraulic evaluation of large-scale fuel assembly at low flow rate condition was indicated.

Journal Articles

Study on evaluation method for entrained gas flow rate by free surface vortex

Ito, Kei*; Ito, Daisuke*; Saito, Yasushi*; Ezure, Toshiki; Matsushita, Kentaro; Tanaka, Masaaki; Imai, Yasutomo*

Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18) (USB Flash Drive), p.6632 - 6642, 2019/08

In this paper, a mechanistic model is proposed to calculate the entrained gas flow rate by a free surface vortex. The model contains the theoretical equation of transient gas core elongation and the empirical equation of critical gas core length for gas bubble detachment. Based on those two equations, the entrained gas flow rate is calculated as the portion of the gas core elongated beyond the critical gas core length per unit time. Then, the mechanistic model was applied to the calculation of the entrained gas flow rate in a simple water experiment. As a result, it is confirmed that the entrained gas flow rate grows rapidly when the liquid (water) flow rate, which determine the strength of a free surface vortex, exceeds a certain threshold value.

Journal Articles

Subchannel analysis of thermal-hydraulics in a fuel assembly with inner duct structure of a sodium-cooled fast reactor

Kikuchi, Norihiro; Imai, Yasutomo*; Yoshikawa, Ryuji; Doda, Norihiro; Tanaka, Masaaki; Ohshima, Hiroyuki

Journal of Nuclear Engineering and Radiation Science, 5(2), p.021001_1 - 021001_12, 2019/04

In the design study of an advanced loop-type sodium-cooled fast reactor in Japan, a specific fuel assembly (FA) named FAIDUS (Fuel Assembly with Inner DUct Structure) has been considered as one of the measures to enhance safety of the reactor during the core disruptive accident. In this study, thermal-hydraulics in FAIDUS was investigated with the in-house subchannel analysis code named ASFRE. Before the application to FAIDUS, applicability of ASFRE to FAs was confirmed through the numerical simulations for the experiments of simulated FA. Through the comparisons between the numerical results of thermal-hydraulic analyses of FAIDUS and a typical FA without the inner duct, it was indicated that significant asymmetric temperature distribution would not occur in FAIDUS at both high and low flow rate conditions.

Journal Articles

Thermal-hydraulics analysis of fuel assembly with inner duct structure of a sodium-cooled fast reactor

Kikuchi, Norihiro; Imai, Yasutomo*; Yoshikawa, Ryuji; Tanaka, Masaaki; Ohshima, Hiroyuki

Nihon Kikai Gakkai Kanto Shibu Ibaraki Koenkai 2017 Koen Rombunshu (CD-ROM), 4 Pages, 2017/08

A specific fuel assembly named FAIDUS (Fuel Assembly with Inner Duct Structure) has been developed as one of the measures to enhance safety of the reactor in the core disruptive accident (CDA) in JAEA. Thermal-hydraulics evaluations in FAIDUS under various operation conditions including the CDA are required to confirm its design feasibility. Therefore, numerical simulations by using thermal-hydraulics analysis program named SPIRAL developed in JAEA are conducted to analyze the thermal-hydraulics in the FAIDUS. Through the numerical simulation in the FAIDUS under tentative rated operation condition of an Advanced SFR, it was indicated that the flow and temperature distribution in the FAIDUS showed the same tendency as that in ordinary FA and specific characteristics was not observed.

Journal Articles

Thermal-hydraulic analysis of fuel assembly with inner duct structure of an advanced loop-type sodium-cooled fast reactor using ASFRE code

Kikuchi, Norihiro; Imai, Yasutomo*; Yoshikawa, Ryuji; Doda, Norihiro; Tanaka, Masaaki; Ohshima, Hiroyuki

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 12 Pages, 2017/07

In the design study of an advanced loop-type SFR in JAEA, a specific fuel assembly (FA) named FAIDUS (Fuel Assembly with Inner DUct Structure) has been adopted as one of the measures to enhance safety of the reactor. Thermal-hydraulics evaluations of FAIDUS under various operation conditions are required to confirm its design feasibility. In this study, after the applicability of ASFRE to FAs was confirmed through the numerical analysis using simulated FA tests, thermal-hydraulic analyses of a FA without an inner duct and a FAIDUS were conducted. Through the numerical analyses, it was indicated that asymmetric temperature distribution in a FAIDUS would not be occurred and characteristics of the temperature distribution was almost the same as that in a FA without an inner duct. Under the low flow rate condition, it was expected that the local flow acceleration caused by the buoyancy force in a FAIDUS could bring the flow redistribution and make the temperature distribution flat.

Journal Articles

Development of sodium-water coupled thermal-hydraulics simulation code for sodium-heated straight tube steam generator of fast reactors

Yoshikawa, Ryuji; Tanaka, Masaaki; Ohshima, Hiroyuki; Imai, Yasutomo*

Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 12 Pages, 2016/10

A sodium-water coupled thermal-hydraulics simulation code TSG has been developed for numerical estimation of three-dimensional thermal-hydraulic phenomena in the straight-tube steam generator. The water analysis module was developed by using the parallel channel model of heat transfer tubes, and the sodium analysis module was developed by using porous body approach. As the first step of validation, simulation results by TSG were compared with the measured data of 1MWt SG experiments under steady state conditions. Through the numerical simulation, the coupled simulation method used in TSG was validated and applicability of TSG to simulate thermal-hydraulics of the straight tube SG in the steady state was confirmed.

Journal Articles

Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko*; Imai, Yasutomo*; Ito, Masahiro*

AIP Conference Proceedings 1702, p.040011_1 - 040011_4, 2015/12

A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions including fuel deformation. This paper gives a summary of numerical methods of component programs of the system and their validation studies.

Journal Articles

Numerical analysis of flow field around simulated wire-wrapped fuel pins of fast reactor

Kikuchi, Norihiro; Ohshima, Hiroyuki; Imai, Yasutomo*; Hiyama, Tomoyuki; Nishimura, Masahiro; Tanaka, Masaaki

Nihon Kikai Gakkai Kanto Shibu Ibaraki Koenkai 2015 Koen Rombunshu, p.179 - 180, 2015/08

In an economically improved sodium-cooled fast reactor, a narrower gap is considered among the fuel pins so as to achieve a high burn-up. Therefore, it is needed to evaluate thermal-hydraulic characteristics in case of a change of the gap geometry due to deformation of fuel pin caused by such as a swelling and a thermal bowing. For this purpose, a FEM analysis code, SPIRAL has been being developed in JAEA and the code validations using water or sodium experimental results have also being performed. In this study, a numerical analysis of a flow field around wire-wrapped fuel pins based on a 3-pin bundle water experiment was carried out as a validation study of SPIRAL. As a result, it was demonstrated that the hybrid-type turbulent model incorporated in SPIRAL has a high applicability to investigate the flow structure of the narrow gap in the fuel assembly.

JAEA Reports

Straight tube steam generator three-dimensional thermal-hydraulic code TSG; User's manual of water side simulation

Yoshikawa, Ryuji; Ohshima, Hiroyuki; Tanaka, Masaaki; Imai, Yasutomo*

JAEA-Data/Code 2014-034, 84 Pages, 2015/03

JAEA-Data-Code-2014-034.pdf:2.35MB

TSG (Three-dimensional Thermal-hydraulics Analysis Code for Steam Generators) is being developed for analyses of thermal hydraulics in double wall straight tube steam generator of Fast Breeder Reactor. TSG code is a thermal hydraulics simulation system which couples sodium side three dimensional simulation with water side multi-channel simulation. The three dimensional flow field in the sodium side is simulated by a commercial code FLUENT with porous media model. The multi-channel two-phase flow is simulated by an in-house module with drift-flux model. The sodium side simulation is coupled with the water side simulation by the transmission of heat transfer rate through the heat transfer tube. This report presents a description of the computational models, input and output as the user's manual of TSG water side module.

Journal Articles

Study on flow in the subchannels of pin bundle with wrapping wire

Nishimura, Masahiro; Hiyama, Tomoyuki; Kamide, Hideki; Ohshima, Hiroyuki; Nagasawa, Kazuyoshi*; Imai, Yasutomo*

Proceedings of 9th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-9) (CD-ROM), 7 Pages, 2014/11

Journal Articles

Study on simulation code for dilute bubbly flow

Ito, Kei; Takata, Takashi*; Ohno, Shuji; Kogawa, Hiroyuki; Kamide, Hideki; Imai, Yasutomo*; Kawamura, Takumi*

Nihon Kikai Gakkai Rombunshu, B, 79(808), p.2630 - 2634, 2013/12

In a sodium-cooled fast reactor, inert gas exists in the primary coolant system as bubbles or dissolved gas. Similarly, small bubbles exist also in the mercury target loop in J-PARC to suppress cavitation erosion. To simulate these inert gas behaviors in liquid metal flows, the Japan Atomic Energy Agency (JAEA) has developed a plant dynamics code VIBUL. In this study, new models, i.e. the bubble release and bubble carry under models, are introduced to simulate the bubble behaviors in the fast reactor and mercury target system. Then, the small bubble behavior in the mercury target system is simulated to check the validity of the new models.

JAEA Reports

Study on numerical simulation of bubble and dissolved gas behavior in liquid metal flow

Ito, Kei; Ohno, Shuji; Kamide, Hideki; Kogawa, Hiroyuki; Futakawa, Masatoshi; Kawamura, Takumi*; Imai, Yasutomo*

JAEA-Research 2013-008, 117 Pages, 2013/10

JAEA-Research-2013-008.pdf:6.55MB

The Japan Atomic Energy Agency has been developed a plant dynamics code VIBUL to simulate the concentration distributions of the dissolved gas and the bubbles in a fast reactor. In this study, the VIBUL code is improved to achieve accurate simulations, e.g. rigorous mole conservation of inert gas. Moreover, new modles are introduced to simulate the small bubble behaviors in the J-PARC mercury target system. To validate the improved models and the newly developed models, the inert gas behaviors in the large-scale sodium-cooled reactor and the small bubble behaviors are simulated. As a result, it is confirmed that the complicated bubble dynamics in each component, e.g. core, IHX or surge tank, can be simulated appropriately by the VIBUL code.

65 (Records 1-20 displayed on this page)