Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 647

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Distinguishing ion dynamics from muon diffusion in muon spin relaxation

Ito, Takashi; Kadono, Ryosuke*

Journal of the Physical Society of Japan, 93(4), p.044602_1 - 044602_7, 2024/04

Journal Articles

Local structural changes in V-Ti-Cr alloy hydrides with hydrogen absorption/desorption cycling

Ikeda, Kazutaka*; Sashida, Sho*; Otomo, Toshiya*; Oshita, Hidetoshi*; Honda, Takashi*; Hawai, Takafumi*; Saito, Hiraku*; Ito, Shinichi*; Yokoo, Tetsuya*; Sakaki, Koji*; et al.

International Journal of Hydrogen Energy, 51(Part A), p.79 - 87, 2024/01

Journal Articles

Development of a non-destructive depth-selective quantification method for sub-percent carbon contents in steel using negative muon lifetime analysis

Ninomiya, Kazuhiko*; Kubo, Kenya*; Inagaki, Makoto*; Yoshida, Go*; Chiu, I.-H. ; Kudo, Takuto*; Asari, Shunsuke*; Sentoku, Sawako*; Takeshita, Soshi*; Shimomura, Koichiro*; et al.

Scientific Reports (Internet), 14, p.1797_1 - 1797_8, 2024/01

The amount of C in steel, which is critical in determining its properties, is strongly influenced by steel production technology. We propose a novel method of quantifying the bulk C content in steel non-destructively using muons. This revolutionary method may be used not only in the quality control of steel in production, but also in analyzing precious steel archaeological artifacts. A negatively charged muon forms an atomic system owing to its negative charge, and is finally absorbed into the nucleus or decays to an electron. The lifetimes of muons differ significantly, depending on whether they are trapped by Fe or C atoms, and identifying the elemental content at the muon stoppage position is possible via muon lifetime measurements. The relationship between the muon capture probabilities of C/Fe and the elemental content of C exhibits a good linearity, and the C content in the steel may be quantitatively determined via muon lifetime measurements. Furthermore, by controlling the incident energies of the muons, they may be stopped in each layer of a stacked sample consisting of three types of steel plates with thicknesses of 0.5 mm, and we successfully determined the C contents in the range 0.20 - 1.03 wt% depth-selectively, without sample destruction.

Journal Articles

Understanding muon diffusion in perovskite oxides below room temperature based on harmonic transition state theory

Ito, Takashi; Higemoto, Wataru; Shimomura, Koichiro*

Physical Review B, 108(22), p.224301_1 - 224301_11, 2023/12

Journal Articles

Pd nanoparticles on the outer surface of microporous aluminosilicates for the direct alkylation of benzenes using alkanes

Misaki, Satoshi*; Miwa, Hiroko*; Ito, Takashi; Yoshida, Takefumi*; Hasegawa, Shingo*; Nakamura, Yukina*; Tokutake, Shunta*; Takabatake, Moe*; Shimomura, Koichiro*; Chun, W.-J.*; et al.

ACS Catalysis, 13(18), p.12281 - 12287, 2023/09

Journal Articles

Band gap formation in graphene by hybridization with Hex-Au(001) reconstructed surface

Terasawa, Tomoo; Matsunaga, Kazuya*; Hayashi, Naoki*; Ito, Takahiro*; Tanaka, Shinichiro*; Yasuda, Satoshi; Asaoka, Hidehito

Vacuum and Surface Science, 66(9), p.525 - 530, 2023/09

As Au (001) surfaces exhibit a quasi-one-dimensional corrugated structure, Hex-Au(001), its periodicity was predicted to change the electronic structure of graphene when graphene was grown on this surface. Furthermore, the hybridization between graphene and Au is known to introduce bandgap and spin polarization into graphene. Here, we report angle-resolved photoemission spectroscopy and density functional theory calculation of graphene on a Hex-Au(001) surface. A bandgap of 0.2 eV in the graphene Dirac cone was observed at the crossing point of the graphene Dirac cone and Au 6sp bands, indicating that the origin of the bandgap formation was the hybridization between the graphene Dirac cone and Au 6sp band. We discussed the hybridization mechanism and anticipated spin injection into the graphene Dirac cone.

Journal Articles

Local electronic structure of interstitial hydrogen in MgH$$_2$$ inferred from muon study

Kadono, Ryosuke*; Hiraishi, Masatoshi*; Okabe, Hirotaka*; Koda, Akihiro*; Ito, Takashi

Journal of Physics; Condensed Matter, 35(28), p.285503_1 - 285503_13, 2023/07

Journal Articles

Muon spin rotation, relaxation, and resonance ($$mu$$SR) methods

Ito, Takashi; Shimomura, Koichiro*

Hydrogenomics; The Science of Fully Utilizing Hydrogen (Internet), p.43 - 49, 2023/03

Journal Articles

Magnetic ground state of YbCo$$_2$$Zn$$_{20}$$ probed by muon spin relaxation

Higemoto, Wataru; Sato, Kazuhiko*; Ito, Takashi; Oishi, Kazuki*; Saiga, Yuta*; Kosaka, Masashi*; Matsubayashi, Kazuyuki*; Uwatoko, Yoshiya*

Journal of Physics; Conference Series, 2462, p.012039_1 - 012039_5, 2023/03

The cubic compound YbCo$$_2$$Zn$$_{20}$$ has huge electronic specific heat coefficient and its ground state could be located in the vicinity of the quantum critical point. Indeed, a magnetic long-range order was observed under pressure above 1-2 GPa. To investigate magnetic ground state, we have carried out muon spin relaxation measurements and confirm non-magnetic ground state with fluctuating tiny magnetic moment.

Journal Articles

Present status of J-PARC MUSE

Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Natori, Hiroaki*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Tampo, Motonobu*; Kawamura, Naritoshi*; Teshima, Natsuki*; et al.

Journal of Physics; Conference Series, 2462, p.012033_1 - 012033_5, 2023/03

Journal Articles

LASSO reconstruction scheme to predict radioactive source distributions inside reactor building rooms; Practical applications

Machida, Masahiko; Shi, W.*; Yamada, Susumu; Miyamura, Hiroko; Yoshida, Toru*; Hasegawa, Yukihiro*; Okamoto, Koji; Aoki, Yuto; Ito, Rintaro; Yamaguchi, Takashi; et al.

Proceedings of Waste Management Symposia 2023 (WM2023) (Internet), 11 Pages, 2023/02

Journal Articles

Band gap opening in graphene by hybridization with Au (001) reconstructed surfaces

Terasawa, Tomoo; Matsunaga, Kazuya*; Hayashi, Naoki*; Ito, Takahiro*; Tanaka, Shinichiro*; Yasuda, Satoshi; Asaoka, Hidehito

Physical Review Materials (Internet), 7(1), p.014002_1 - 014002_10, 2023/01

 Times Cited Count:0 Percentile:75.82(Materials Science, Multidisciplinary)

Au(001) surfaces exhibit a complex reconstructed structure [Hex-Au(001)] comprising a hexagonal surface and square bulk lattices, yielding a quasi-one-dimensional corrugated surface. When graphene was grown on this surface, the periodicity of the corrugated surface was predicted to change the electronic structure of graphene, forming bandgaps and new Dirac points. Furthermore, the graphene-Au interface is promising for bandgap generation and spin injection due to band hybridization. Here, we report the angle-resolved photoemission spectroscopy and density functional calculation of graphene on a Hex-Au(001) surface. The crossing point of the original and replica graphene $$pi$$ bands showed no bandgap, suggesting that the one-dimensional potential was too small to modify the electronic structure. A bandgap of 0.2 eV was observed at the crossing point of the graphene $$pi$$ and Au $$6sp$$ bands, indicating that the bandgap is generated using hybridization of the graphene $$pi$$ and Au $$6sp$$ bands. We discussed the hybridization mechanism and concluded that the R30 configuration between graphene and Au and an isolated electronic structure of Au are essential for effective hybridization between graphene and Au. We anticipate that hybridization between graphene $$pi$$ and Au $$6sp$$ would result in spin injection into graphene.

Journal Articles

Direct measurement of the evolution of magnetism and superconductivity toward the quantum critical point

Higemoto, Wataru; Yokoyama, Makoto*; Ito, Takashi; Suzuki, Taiga*; Raymond, S.*; Yanase, Yoichi*

Proceedings of the National Academy of Sciences of the United States of America, 119(49), p.e2209549119_1 - e2209549119_6, 2022/11

 Times Cited Count:0 Percentile:0

no abstracts in English

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:3 Percentile:80.29(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

On the origin of localized electrons in SrTiO$$_3$$ metallized by hydrogen irradiation

Ito, Takashi

Meson, (56), p.21 - 26, 2022/09

no abstracts in English

Journal Articles

Two-step Mott transition in Ni(S,Se)$$_2$$; $$mu$$SR studies and charge-spin percolation model

Sheng, Q.*; Kaneko, Tatsuya*; Yamakawa, Kohtaro*; Guguchia, Z.*; Gong, Z.*; Zhao, G.*; Dai, G.*; Jin, C.*; Guo, S.*; Fu, L.*; et al.

Physical Review Research (Internet), 4(3), p.033172_1 - 033172_14, 2022/09

Journal Articles

Quantum critical spin-liquid-like behavior in the $$S$$ = $$frac{1}{2}$$ quasikagome-lattice compound CeRh$$_{1-x}$$Pd$$_x$$Sn investigated using muon spin relaxation and neutron scattering

Tripathi, R.*; Adroja, D. T.*; Ritter, C.*; Sharma, S.*; Yang, C.*; Hillier, A. D.*; Koza, M. M.*; Demmel, F.*; Sundaresan, A.*; Langridge, S.*; et al.

Physical Review B, 106(6), p.064436_1 - 064436_17, 2022/08

 Times Cited Count:2 Percentile:37.1(Materials Science, Multidisciplinary)

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

Journal Articles

Hydrogen-Ti$$^{3+}$$ complex as a possible origin of localized electron behavior in hydrogen-irradiated SrTiO$$_3$$

Ito, Takashi

e-Journal of Surface Science and Nanotechnology (Internet), 20(3), p.128 - 134, 2022/05

Journal Articles

Magnetic Bragg peak enhancement under ultrasound injection

Shamoto, Shinichi*; Akatsu, Mitsuhiro*; Matsuura, Masato*; Kawamura, Seiko; Harii, Kazuya*; Ono, Masao*; Chang, L.-J.*; Ito, Takashi; Nemoto, Yuichi*; Ieda, Junichi

Physical Review Research (Internet), 4(1), p.013245_1 - 013245_7, 2022/03

Ultrasound injection effect on a magnetic Bragg peak of yttrium iron garnet has been studied by quasielastic neutron scattering. The magnetic Bragg peak is vastly enhanced with decreasing temperature. The energy width increases proportionally to the square root of the sample temperature increase induced by the ultrasound injection. Because the magnetic Bragg peak is enhanced by the lattice vibration, the enhancement is expected to relate to the spin-lattice coupling closely. An observed sharp drop above 100 K in the longitudinal mode suggests the degradation of the spin-lattice coupling. It is consistent with the decline of spin Seebeck effect with increasing temperature above 100 K, proving the degradation mechanism by the spin-lattice coupling.

647 (Records 1-20 displayed on this page)