Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 28

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

The Development status of Generation IV reactor systems, 7; Sodium-cooled Fast Reactor (SFR)

Kamide, Hideki; Ito, Takaya*; Kotake, Shoji*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 60(9), p.562 - 566, 2018/09

Sodium-cooled Fast Reactors (SFRs) have significant characteristics on sustainability as follows, highly effective utilization of Uranium resource, burning of TRU long-life nuclide, e.g., Plutonium, reduction of volume and toxicity of high level radioactive waste of spent fuels. SFRs are one of promising concepts at a step of demonstration phase of development. BN-800 in Russia has already started commercial operation. This is a great step toward the commercialization of SFRs. Russia stated that SFR entered the step of commercial use and next step was demonstration of safety and economy of SFRS by means of operation of BN-1200. Construction of a demo reactor of 600 MWe started in China. In India, operation of PFBR is planned near future and also constructions of 6 units of commercial reactors are also planned. In this report such SFR development plans of oversea countries are summarized including development status and future direction in Japan,

Journal Articles

Development of prototype reactor maintenance, 1; Application to piping system of sodium-cooled reactor prototype

Kotake, Shoji*; Chikazawa, Yoshitaka; Takaya, Shigeru; Otaka, Masahiko; Kubo, Shigenobu; Arai, Masanobu; Kunogi, Kosuke; Ito, Takaya*; Yamaguchi, Akira*

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 6 Pages, 2017/04

A maintenance management required to prototype nuclear power reactors is proposed. Monitoring and control of sodium impurity and thermal transient are extremely important for sodium boundary maintenance for sodium-cooled fast reactors. At the fast stage of the prototype reactor Monju operation, degradation mechanism on the piping should be demonstrated based on operation experiences. Therefore inspection on a representative position for crack indication and pipe thickness is proposed. Due to less experience of SFR plants, early detection of boundary failure is considered. For a matured operation stage, when degradation mechanism is well demonstrated based on inspection data, inspection cycle could be extended. And for commercial reactors, maintenance without inspection will be established based on accumulated operation experiences including those of the prototype reactor Monju.

Journal Articles

Development of prototype reactor maintenance, 2; Application to piping support of sodium-cooled reactor prototype

Arai, Masanobu; Kunogi, Kosuke; Aizawa, Kosuke; Chikazawa, Yoshitaka; Takaya, Shigeru; Kubo, Shigenobu; Kotake, Shoji*; Ito, Takaya*; Yamaguchi, Akira*

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 6 Pages, 2017/04

Applications for maintenance program on piping support of prototype fast breeder reactor Monju are studied. Based on degradation mechanism, snubbers in Monju primary cooling system showed lifetime more than the plant lifetime of 30 years by experiments conservatively. For the first step during construction, visual inspection on accessible all supports could be available. In that visual inspection, mounting conditions and damages of all accessible supports could be monitored. One of major features of the Monju primary piping system is large thermal expansion due to large temperature difference between maintenance and operation conditions. Thanks to that large thermal expansion, integrity of the piping support could be monitored by measuring piping displacement. When technologies of piping displacement monitoring are matured in Monju, visual inspection on piping support could be shifted to piping displacement monitoring. At that stage, the visual inspection could be limited only on representative supports.

Journal Articles

JSFR design progress related to development of safety design criteria for generation IV sodium-cooled fast reactors, 1; Overview

Kamide, Hideki; Ando, Masato*; Ito, Takaya*

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05

JAEA, JAPC and MFBR have been conducted design study for the Japan Sodium-cooled Fast Reactor (JSFR), which is a design concept aiming at future commercial use as sustainable electric power source. Since 2011, in order to contribute to the development of safety design criteria (SDC) and safety design guideline (SDG), which include the lesson learned from the TEPCO's Fukushima Dai-ichi Nuclear Power Plants accident, in the frame work of generation IV international forum (GIF), the design study is focusing on the design measures against sever external events such as earthquake and tsunami. At the same time, the design study is going into detail and paying much attention to the maintenance and repair to make surer its feasibility. This paper summarizes the design concept of the demonstration version of JSFR in which progress of design work was incorporated.

Journal Articles

Enhancement of JSFR safety design and criteria for Gen.IV reactor

Aoto, Kazumi; Chikazawa, Yoshitaka; Okubo, Tsutomu; Okada, Keizo*; Ito, Takaya*

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Safe Technologies and Sustainable Scenarios (FR-13) (USB Flash Drive), 10 Pages, 2013/03

Overview of Japan Sodium-cooled Fast Reactor (JSFR) development status and reflection of lessons learned from the TEPCO's Fukushima Dai-ichi Nuclear Power Plant (1F) accident have been summarized. JSFR was recognized as a promising next generation nuclear reactor. Even though the JSFR safety design already took into account measures against severe accident situations and passive safety features such as passive shutdown system and natural convection decay heat removal systems in the 2010 design version, it is become aware of importance of design measures against severe accidents and extreme external events by the 1F accident. As recent activities, external hazard evaluations and design improvements reflecting lessons learned from 1F accident have been conducted. This paper also discusses importance of development of global safety design criteria and international Research and Development cooperation on safety design measures.

Journal Articles

Evaluation of JSFR key technologies

Chikazawa, Yoshitaka; Aoto, Kazumi; Hayafune, Hiroki; Kotake, Shoji; Ono, Yushi; Ito, Takaya*; Toda, Mikio*

Nuclear Technology, 179(3), p.360 - 373, 2012/09

 Times Cited Count:11 Percentile:63.54(Nuclear Science & Technology)

Key technologies for Japan Sodium-cooled Fast Reactor (JSFR) have been evaluated. The ten technologies: high burn-up fuel, safety enhancement, compact reactor vessel, two-loop cooling system using high chromium steel, integrated intermediate heat exchanger/pump component, reliable steam generator, natural circulation decay heat removal system, simplified fuel handling system, containment vessel made of steel plate reinforced concrete and advanced seismic isolation system have been confirmed to be feasible to be installed a conceptual design of demonstration JSFR to be ready for large scale demonstration experiments.

Journal Articles

JSFR design study and R&D progress in the FaCT project

Aoto, Kazumi; Uto, Nariaki; Sakamoto, Yoshihiko; Ito, Takaya*; Toda, Mikio*; Kotake, Shoji*

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles (FR 2009) (CD-ROM), 11 Pages, 2012/00

In the FaCT project, SFR with 1,500 MWe is a target for the commercialization. R&D on innovative technologies to achieve the economic competitiveness and enhance the reliability and safety is carried out. A compact RV without wall-cooling layer is pursued in consideration of seismic reliability. For a two-loop cooling system with shortened high chromium steel piping, studies on the hydraulics in the pipe elbow and the fabrication capability of the pipes are being performed. A double-walled straight tube SG is investigated to enhance the reliability against sodium/water reaction, and developmental works are progressing including the thermal-hydraulic design and trial manufacturing for components. SASS is being developed with safety analysis of the applicability for JSFR and experimental demonstration in JOYO. An advanced fuel handling system is also pursued. Discussion on whether the innovative technologies can be adopted for JSFR is in progress to be finalized in 2010.

Journal Articles

Conceptual design for a large-scale Japan sodium-cooled fast reactor, 1; Feasibility of key technologies

Chikazawa, Yoshitaka; Aoto, Kazumi; Hayafune, Hiroki; Ono, Yushi; Kotake, Shoji; Toda, Mikio*; Ito, Takaya*

Proceedings of 2011 International Congress on Advances in Nuclear Power Plants (ICAPP '11) (CD-ROM), p.426 - 435, 2011/05

Key technologies for Japan Sodium-cooled Fast Reactor (JSFR) has been evaluated. The hot vessel, two-loop cooling system using high chromium steel, integrated intermediate heat exchanger/pump component, highly reliable steam generator, natural circulation decay heat removal system and improved in-service inspection and repair capability have been confirmed to be feasible as development items for the next stage.

Journal Articles

Design study and R&D progress on Japan sodium-cooled fast reactor

Aoto, Kazumi; Uto, Nariaki; Sakamoto, Yoshihiko; Ito, Takaya*; Toda, Mikio*; Kotake, Shoji*

Journal of Nuclear Science and Technology, 48(4), p.463 - 471, 2011/04

In the FaCT project, SFR with 1,500 MWe is a target for the commercialization. R&D on innovative technologies to achieve the economic competitiveness and enhance the reliability and safety is carried out. A compact RV without wall-cooling layer is pursued in consideration of seismic reliability. For a two-loop cooling system with shortened high chromium steel piping, studies on the hydraulics in the pipe elbow and the fabrication capability of the pipes are being performed. A double-walled straight tube SG is investigated to enhance the reliability against sodium/water reaction, and developmental works are progressing including the thermal-hydraulic design and trial manufacturing for components. SASS is being developed with safety analysis of the applicability for JSFR and experimental demonstration in JOYO. An advanced fuel handling system is also pursued. Discussion on whether the innovative technologies can be adopted for JSFR is in progress to be finalized in 2010.

Journal Articles

Conceptual design study toward the demonstration reactor of JSFR

Sakai, Takaaki; Kotake, Shoji; Aoto, Kazumi; Ito, Takaya*; Kamishima, Yoshio*; Oshima, Jun*

Proceedings of 2010 International Congress on Advances in Nuclear Power Plants (ICAPP '10) (CD-ROM), p.521 - 530, 2010/06

JAEA is now conducting "Fast Reactor Cycle Technology Development (FaCT)" project for the commercialization before 2050s. A demonstration reactor of Japan Sodium-cooled Fast Reactor (JSFR) is planned to start operation around 2025. In the FaCT project, conceptual design study on the demonstration reactor has been performed since 2007 to determine the referential reactor specifications for the next stage design work from 2011 for the licensing and construction. Plant performance as a demonstration reactor for the 1.5 GWe commercial reactor JSFR is being compared between 750 MWe and 500 MWe plant designs. By using the results of conceptual design study, output power will be determined during year of 2010. In this paper, current status of the conceptual design study will be summarized with related research and developments on plant technologies.

Journal Articles

Current status of conceptual design study toward the demonstration reactor of JSFR

Sakai, Takaaki; Kotake, Shoji; Aoto, Kazumi; Ito, Takaya*; Kamishima, Yoshio*; Oshima, Jun*

Proceedings of 18th International Conference on Nuclear Engineering (ICONE-18) (CD-ROM), 8 Pages, 2010/05

JAEA is now conducting "Fast Reactor Cycle Technology Development (FaCT)" project for commercialization before 2050s. A demonstration reactor for Japan Sodium-cooled Fast Reactor (JSFR) is planned to start operation around 2025. In the FaCT project, conceptual design study on the demonstration reactor has been performed since FY2007 to determine referential reactor specifications for the next stage of design work of licensing and construction study. Plant performance as a demonstration reactor for the 1.5 GWe commercial reactor JSFR is being compared between 750 MWe and 500 MWe plant designs. In this paper, the current status of the conceptual design study for the demonstration reactor plant is summarized.

Journal Articles

Mitsubishi activities for advanced reactor development; Sodium-cooled Fast Reactor

Ito, Takaya*; Sato, Hiroyuki*; Usui, Yukinori*; Toda, Mikio*

Mitsubishi Juko Giho, 43(4), p.45 - 49, 2006/12

MHI has participated in the FBR development that is a national project from an initial stage as a member of fabricators. Aiming at FBR commercialization until 2050, MHI has actively contributed to "Feasibility Studies on Commercialized Fast Reactor Cycle System" performed mainly by JAEA from 1999. This time, the Sodium-cooled Fast Reactor was chosen at a national level as the main concept. This Sodium-cooled Fast Reactor is proposed by MHI, and for an economy improvement innovation technologies (reduction of the number of the loops, shortening of piping systems, integrated IHX/Pump component and so on) are adopted in this concept. From now on, research and development for FBR commercialization will be accelerated at a national level toward realization of a demonstration reactor until about 2025. MHI also challenges the project as a proposer of this concept.

JAEA Reports

Investigation Research on the Evaluation of a Coupled Thermo-Hydro-Mechanical-Chemical Phenomena (IV) -Result Report-

Ishihara, Yoshinao*; Chijimatsu, Masakazu*; Amemiya, Kiyoshi*; Shiozaki, Isao*; Ito, Takaya*

JNC TJ8400 2004-015, 192 Pages, 2005/02

JNC-TJ8400-2004-015.pdf:1.98MB

In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code "COUPLYS (Coupling Analysis System)" on the Thermo-Hydro-Mechanical-Chemical (THMC) phenomena by THAMES, Dtransu and phreeqc, which are existing analysis code, is developed in this study.

JAEA Reports

Investigation Research on the Evaluation of a Coupled Thermo-Hydro-Mechanical-Chemical Phenomena (III) -Result Report-

Ishihara, Yoshinao*; Chijimatsu, Masakazu*; Amemiya, Kiyoshi*; Shiozaki, Isao*; Ito, Takaya*

JNC TJ8400 2004-004, 625 Pages, 2004/02

JNC-TJ8400-2004-004.pdf:7.37MB

In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code on the thermo-hydro-mechanical-chemical phenomena by THAMES, Dtransu and phreeqc, which are existing analysis code, is developed in this study. And we carried out the case analysis on the thermo-hydro-mechanical-chemical phenomena by this code.(1).Some supporting module, which includes transfer of dissolution concentration and total concentration (dissolution + precipitation concentration), was prepared as a functional expansion. And in order to treat de-gases and gases diffusion, accumulation and dilution phenomena, we have modified mass transport analysis code.(2).We have modified reactive transport module to treat ionic exchange, surface reaction and kinetic reaction in the each barrier.(3).We have prepared hydraulic conductivity module of buffer material depending on change of dry density due to chemical equilibrium (dissolution and precipitation of minerals), degradation of buffer material such as Ca-type bentonite and change of concentration of NaCl solutions. After THAMES, Dtransu, phreeqc and hydraulic conductivity module were installed in the COUPLYS, verification study was carried out to check basic function. And we have modified COUPLYS to control coupling process.(4).In order to confirm the applicability of the developed THMC analysis code, we have carried out case analysis on 1-dimensional and 3-dimensional model which including vitrified waste, over-pack, buffer material and rock in the HLW near-field.

JAEA Reports

Study on Advanced Systematic Function of the JNC Geological Disposal Technical Information Integration System -Summary Report-

Ishihara, Yoshinao*; Fukui, Hiroshi*; Sagawa, Hiroshi*; Matsunaga, Kenichi*; Ito, Takaya*

JNC TJ8400 2004-003, 28 Pages, 2004/02

JNC-TJ8400-2004-003.pdf:0.51MB

In this study, while attaining systematization about the technical know-how mutually utilized between geology environmental field, disposal technology (design) field and safety assessment field, the share function of general information in which the formation of an information share and the use promotion between the technical information management databases built for every field were aimed at as an advancement of the function of JNC Geological Disposal Technical Information Integration System considered, and the system function for realizing considered in integration of technical information. (1) Since the concrete information about geology environment which is gradually updated with progress of stratum disposal research, or increases is reflected suitable for research of design and safety assessment, After arranging the form suitable for systematizing technical information, while arranging the technical information in both the fields of design and safety assessment with the form of two classes based on tasks/works, it systematized planning adjustment about delivery of technical information with geology environmental field. (2) In order to aim at integration of 3-fields technical information of geological disposal, based on the examination result of systematization of technical information, the function of mutual use of the information managed in two or more databases was considered. Moreover, while considering system functions, such as management of the use history of technical information, connection of information use, and a notice of common information, the system operation windows in consideration of the ease of operation was examined.

JAEA Reports

Study on Advanced Systematic Function of the JNC Geological Disposal Technical Information Integration System -Research Document-

Ishihara, Yoshinao*; Fukui, Hiroshi*; Sagawa, Hiroshi*; Matsunaga, Kenichi*; Ito, Takaya*

JNC TJ8400 2004-002, 99 Pages, 2004/02

JNC-TJ8400-2004-002.pdf:10.91MB

In this study, while attaining systematization about the technical know-how mutually utilized between geology environmental field, disposal technology (design) field and safety assessment field, the share function of general information in which the formation of an information share and the use promotion between the technical information management databases built for every field were aimed at as an advancement of the function of JNC Geological Disposal Technical Information Integration System considered, and the system function for realizing considered in integration of technical information. (1) Since the concrete information about geology environment which is gradually updated with progress of stratum disposal research, or increases is reflected suitable for research of design and safety assessment, After arranging the form suitable for systematizing technical information, while arranging the technical information in both the fields of design and safety assessment with the form of two classes based on tasks/works, it systematized planning adjustment about delivery of technical information with geology environmental field. (2) In order to aim at integration of 3-fields technical information of geological disposal, based on the examination result of systematization of technical information, the function of mutual use of the information managed in two or more databases was considered. Moreover, while considering system functions, such as management of the use history of technical information, connection of information use, and a notice of common information, the system operation windows in consideration of the ease of operation was examined.

JAEA Reports

Study on Systematic Integration Technology of design and Safety Assessment for HLW geological Disposal(II)

Ishihara, Yoshinao*; Fukui, Hiroshi*; Sagawa, Hiroshi*; Ito, Takaya*; Matsunaga, Kenichi*; Kohanawa, Osamu*; Kuwayama, Yuki*

JNC TJ8400 2003-038, 41 Pages, 2003/02

JNC-TJ8400-2003-038.pdf:0.48MB

The present study was carried out relating to basic design of the "Geological Disposal Technology Integration System" that will be systematized as knowledge base for design analysis and safety assesment of HLW geological disposal system by integrating organically and hierarchically various technical information in three study field.

JAEA Reports

Study on Systematic Integration Technology of Design and Safety Assessment for HLW Geological Disposal (II)

Ishihara, Yoshinao*; Fukui, Hiroshi*; Sagawa, Hiroshi*; Ito, Takaya*; Matsunaga, Kenichi*; Kohanawa, Osamu*; Kuwayama, Yuki*

JNC TJ8400 2003-037, 505 Pages, 2003/02

JNC-TJ8400-2003-037.pdf:34.06MB

The present study was carried out relating to basic design of the "Geological Disposal Technology Integration System" that will be systematized as knowledge base for design analysis and safety assessment of HLW geological disposal system by integrating organically and hierarchically various technical information in three study field.

JAEA Reports

Investigation Research on the Evaluation of a Coupled Thermo-Hydro-Mechanical-Chemical Phenomena (II); Outline Report

Ishihara, Yoshinao*; Chijimatsu, Masakazu*; Neyama, Atsushi*; Tanaka, Yumiko*; Amemiya, Kiyoshi*; Shiozaki, Isao*; Ito, Takaya*

JNC TJ8400 2003-033, 118 Pages, 2003/02

JNC-TJ8400-2003-033.pdf:1.66MB

In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code on the thermo-hydro-mechanical-chemical phenomena by THAMES, Dtransu and phreeqe60, which are existing analysis code, is developed in this study. And we carried out the case analysis on the thermo-hydro-mechanical-chemical phenomena by this code.

JAEA Reports

Investigation Research on the Evaluation of a Coupled Thermo-Hydro-Mechanical-Chemical Phenomena (II) - Result Report-

Ishihara, Yoshinao*; Chijimatsu, Masakazu*; Neyama, Atsushi*; Tanaka, Yumiko*; Amemiya, Kiyoshi*; Shiozaki, Isao*; Ito, Takaya*

JNC TJ8400 2003-032, 237 Pages, 2003/02

JNC-TJ8400-2003-032.pdf:2.5MB

In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code on the thermo-hydro-mechanical-chemical phenomena by THAMES, Dtransu and phreeqe60, which are existing analysis code, is developed in this study. And we carried out the case analysis on the thermo-hydro-mechanical-chemical phenomena by this code.

28 (Records 1-20 displayed on this page)