Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 33

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

22A beam production of the uniform negative ions in the JT-60 negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Grisham, L. R.*; Hatayama, Akiyoshi*; Shibata, Takanori*; Yamamoto, Takashi*; Akino, Noboru; Endo, Yasuei; et al.

Fusion Engineering and Design, 96-97, p.616 - 619, 2015/10

 Times Cited Count:11 Percentile:67.6(Nuclear Science & Technology)

In JT-60 Super Advanced for the fusion experiment, 22A, 100s negative ions are designed to be extracted from the world largest ion extraction area of 450 mm $$times$$ 1100 mm. One of the key issues for producing such as high current beams is to improve non-uniform production of the negative ions. In order to improve the uniformity of the negative ions, a tent-shaped magnetic filter has newly been developed and tested for JT-60SA negative ion source. The original tent-shaped filter significantly improved the logitudunal uniformity of the extracted H$$^{-}$$ ion beams. The logitudinal uniform areas within a $$pm$$10 deviation of the beam intensity were improved from 45% to 70% of the ion extraction area. However, this improvement degrades a horizontal uniformity. For this, the uniform areas was no more than 55% of the total ion extraction area. In order to improve the horizontal uniformity, the filter strength has been reduced from 660 Gasus$$cdot$$cm to 400 Gasus$$cdot$$cm. This reduction improved the horizontal uniform area from 75% to 90% without degrading the logitudinal uniformity. This resulted in the improvement of the uniform area from 45% of the total ion extraction areas. This improvement of the uniform area leads to the production of a 22A H$$^{-}$$ ion beam from 450 mm $$times$$ 1100 mm with a small amount increase of electron current of 10%. The obtained beam current fulfills the requirement for JT-60SA.

Journal Articles

Progress in long-pulse production of powerful negative ion beams for JT-60SA and ITER

Kojima, Atsushi; Umeda, Naotaka; Hanada, Masaya; Yoshida, Masafumi; Kashiwagi, Mieko; Tobari, Hiroyuki; Watanabe, Kazuhiro; Akino, Noboru; Komata, Masao; Mogaki, Kazuhiko; et al.

Nuclear Fusion, 55(6), p.063006_1 - 063006_9, 2015/06

 Times Cited Count:38 Percentile:89.6(Physics, Fluids & Plasmas)

Significant progresses in the extension of pulse durations of powerful negative ion beams have been made to realize the neutral beam injectors for JT-60SA and ITER. In order to overcome common issues of the long pulse production/acceleration of negative ion beams in JT-60SA and ITER, the new technologies have been developed in the JT-60SA ion source and the MeV accelerator in Japan Atomic Energy Agency. As for the long pulse production of high-current negative ions for JT-60SA ion source, the pulse durations have been successfully increased from 30 s at 13 A on JT-60U to 100 s at 15 A by modifying the JT-60SA ion source, which satisfies the required pulse duration of 100 s and 70% of the rated beam current for JT-60SA. This progress was based on the R&D efforts for the temperature control of the plasma grid and uniform negative ion productions with the modified tent-shaped filter field configuration. Moreover, the each parameter of the required beam energy, current and pulse has been achieved individually by these R&D efforts. The developed techniques are useful to design the ITER ion source because the sustainment of the cesium coverage in large extraction area is one of the common issues between JT-60SA and ITER. As for the long pulse acceleration of high power density beams in the MeV accelerator for ITER, the pulse duration of MeV-class negative ion beams has been extended by more than 2 orders of magnitude by modifying the extraction grid with a high cooling capability and a high-transmission of negative ions. A long pulse acceleration of 60 s has been achieved at 70 MW/m$$^{2}$$ (683 keV, 100 A/m$$^{2}$$) which has reached to the power density of JT-60SA level of 65 MW/m$$^{2}$$.

JAEA Reports

Disassembly of the NBI system on JT-60U for JT-60 SA

Akino, Noboru; Endo, Yasuei; Hanada, Masaya; Kawai, Mikito*; Kazawa, Minoru; Kikuchi, Katsumi*; Kojima, Atsushi; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; et al.

JAEA-Technology 2014-042, 73 Pages, 2015/02

JAEA-Technology-2014-042.pdf:15.1MB

According to the project plan of JT-60 Super Advanced that is implemented as an international project between Japan and Europe, the neutral beam (NB) injectors have been disassembled. The disassembly of the NB injectors started in November, 2009 and finished in January, 2012 without any serious problems as scheduled. This reports the disassembly activities of the NB injectors.

Journal Articles

Improvement of uniformity of the negative ion beams by Tent-shaped magnetic field in the JT-60 negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Grisham, L. R.*; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; et al.

Review of Scientific Instruments, 85(2), p.02B314_1 - 02B314_4, 2014/02

 Times Cited Count:13 Percentile:51.07(Instruments & Instrumentation)

Non-uniformity of the negative ion beams in the JT-60 negative ion source was improved by modifying an external magnetic field to a tent-shaped magnetic field for reduction of the local heat loads in the source. Distributions of the source plasmas (H$$^{+}$$ ions and H$$^{0}$$ atoms) of the parents of H$$^{-}$$ ions converted on the cesium covered plasma grids were measured by Langmuir probes and emission spectroscopy. Beam intensities of the H$$^{-}$$ ions extracted from the plasma grids were measured by IR camera from the back of the beam target plate. The tent-shaped magnetic field prevented the source plasmas to be localized by B $$times$$ grad B drift of the primary electrons emitted from the filaments in the arc chamber. As a result, standard derivation of the H$$^{-}$$ ions beams was reduced from 14% (the external magnetic field) to 10% (the tent-shaped magnetic field) without reduction of an activity of the H$$^{-}$$ ion production.

Journal Articles

Origin of non-uniformity of the source plasmas in JT-60 negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Inoue, Takashi; Kashiwagi, Mieko; Grisham, L. R.*; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; et al.

Plasma and Fusion Research (Internet), 8(Sp.1), p.2405146_1 - 2405146_4, 2013/11

Distributions of H$$^{0}$$ and H$$^{+}$$ in the source plasmas produced at the end-plugs of JT-60 negative ions source were measured by Langmuir probes and emission spectroscopy in order to experimentally investigate the cause of lower density of the negative ions extracted from end-plugs in the source. Densities of H$$^{0}$$ and H$$^{+}$$ in end-plugs of the plasma grid in the source were compared with those in the center regions. As a result, lower density of the negative ion at the edge was caused by lower beam optics due to lower and higher density of the H$$^{0}$$ and H$$^{+}$$.

JAEA Reports

Characteristics of surge noise generated by breakdowns at the protection spark gaps for the JT-60 negative ion source and countermeasure of malfunction due to the breakdown noise

Sasaki, Shunichi; Kojima, Atsushi; Shimizu, Tatsuo; Kawai, Mikito*; Hanada, Masaya

JAEA-Technology 2012-040, 26 Pages, 2013/01

JAEA-Technology-2012-040.pdf:5.6MB

Breakdowns occur in the JT-60U 500 kV negative ion accelerator with a high probability during the high voltage conditioning. The breakdown in the accelerator is the same phenomena as a short circuit for the power supply. Surge noise generated by the short circuit causes malfunctions of components in the NBI system and other systems. To evaluate the surge noise characteristics, the breakdown noise has been measured using a test circuit with a spark gap which is the protection gap for the accelerator and it considered to be a source of noise. Further, reduction of the surge noise at the spark gap and countermeasure of the malfunction due to the noise have been studied quantitatively at the side of the system where the malfunction occurs. As a result, it has been observed that the noise propagates through space or grounding lines and gives malfunctions for other systems. To reduce the noise, resistors have been connected in the ground potential side of the gap. It was confirmed that the resistor is effective to reduce the noise and probability of the malfunction has been reduced from 100% to 15%. In addition, by placing the ferrite core in the grounded line and by using an isolation amplifier, the malfunction was further reduced to 10%.

Journal Articles

Progress in development and design of the neutral beam injector for JT-60SA

Hanada, Masaya; Kojima, Atsushi; Tanaka, Yutaka; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; et al.

Fusion Engineering and Design, 86(6-8), p.835 - 838, 2011/10

 Times Cited Count:10 Percentile:64.25(Nuclear Science & Technology)

Neutral beam (NB) injectors for JT-60 Super Advanced (JT-60SA) have been designed and developed. Twelve positive-ion-based and one negative-ion-based NB injectors are allocated to inject 30 MW D$$^{0}$$ beams in total for 100 s. Each of the positive-ion-based NB injector is designed to inject 1.7 MW for 100s at 85 keV. A part of the power supplies and magnetic shield utilized on JT-60U are upgraded and reused on JT-60SA. To realize the negative-ion-based NB injector for JT-60SA where the injection of 500 keV, 10 MW D$$^{0}$$ beams for 100s is required, R&Ds of the negative ion source have been carried out. High-energy negative ion beams of 490-500 keV have been successfully produced at a beam current of 1-2.8 A through 20% of the total ion extraction area, by improving voltage holding capability of the ion source. This is the first demonstration of a high-current negative ion acceleration of $$>$$1 A to 500 keV. The design of the power supplies and the beamline is also in progress. The procurement of the acceleration power supply starts in 2010.

Journal Articles

Development of the JT-60SA Neutral Beam Injectors

Hanada, Masaya; Kojima, Atsushi; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; Kazawa, Minoru; et al.

AIP Conference Proceedings 1390, p.536 - 544, 2011/09

 Times Cited Count:7 Percentile:84.85

no abstracts in English

Journal Articles

Achievement of 500 keV negative ion beam acceleration on JT-60U negative-ion-based neutral beam injector

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Kawai, Mikito*; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Usui, Katsutomi; Sasaki, Shunichi; et al.

Nuclear Fusion, 51(8), p.083049_1 - 083049_8, 2011/08

 Times Cited Count:51 Percentile:88.57(Physics, Fluids & Plasmas)

Hydrogen negative ion beams of 490 keV, 3 A and 510 keV, 1 A have been successfully produced in the JT-60 negative ion source with three acceleration stages. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of 2 m$$^{2}$$ for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6-7 times longer than that for the small-area grid (0.02 m$$^{2}$$). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60SA and ITER.

Journal Articles

Demonstration of 500 keV beam acceleration on JT-60 negative-ion-based neutral beam injector

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Kawai, Mikito*; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Usui, Katsutomi; Sasaki, Shunichi; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Hydrogen negative ion beams of 490keV, 3A and 510 keV, 1A have been successfully produced in the JT-60 negative ion source with three acceleration stages. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of $$sim$$ 2 m$$^{2}$$ for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6-7 times longer than that for the small-area grid (0.02 m$$^{2}$$). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60 SA and ITER.

Journal Articles

Development and design of the negative-ion-based NBI for JT-60 Super Advanced

Hanada, Masaya; Akino, Noboru; Endo, Yasuei; Inoue, Takashi; Kawai, Mikito; Kazawa, Minoru; Kikuchi, Katsumi; Komata, Masao; Kojima, Atsushi; Mogaki, Kazuhiko; et al.

Journal of Plasma and Fusion Research SERIES, Vol.9, p.208 - 213, 2010/08

A large negative ion source with an ion extraction area of 110 cm $$times$$ 45 cm has been developed to produce 500 keV, 22 A D$$^{-}$$ ion beams required for JT-60 Super Advanced. To realize the JT-60SA negative ion source, the JT-60 negative ion source has been modified and tested on the negative-ion-based neutral beam injector on JT-60U. A 500 keV H$$^{-}$$ ion beam has been produced at 3 A without a significant degradation of beam optics. This is the first demonstration of a high energy negative ion acceleration of more than one-ampere to 500 keV in the world. The beam current density of 90 A/m$$^{2}$$ is being increased to meet 130 A/m$$^{2}$$ of the design value for JT-60SA by tuning the operation parameters. A long pulse injection of 30 s has been achieved at a injection D$$^{0}$$ power of 3 MW. The injection energy, defined as the product of the injection time and power, reaches 80 MJ by neutralizing a 340 keV, 27 A D$$^{-}$$ ion beam produced with two negative ion sources.

Journal Articles

Characteristics of voltage holding capability in multi-stage large electrostatic accelerator for fusion application

Kobayashi, Kaoru; Hanada, Masaya; Akino, Noboru; Sasaki, Shunichi; Ikeda, Yoshitaka; Takahashi, Masahiro*; Yamano, Yasushi*; Kobayashi, Shinichi*; Grisham, L. R.*

IEEE Transactions on Dielectrics and Electrical Insulation, 16(3), p.871 - 875, 2009/06

 Times Cited Count:1 Percentile:12.12(Engineering, Electrical & Electronic)

Voltage holding capability of a 500kV, 22A three-stage electrostatic accelerator, where large-area grids of 0.28 m$$^{2}$$ and large FRP insulators of 1.8 m in diameter are used, was examined. High voltage was independently applied to each acceleration stage, where the voltage holding capabilities of 130 kV were obtained. To identify whether the breakdowns occur in the gaps between the grids or the FRP insulators, high voltages were applied to the accelerator with and without the grids. Breakdown voltages without grids, i.e., the FRP insulator itself reached 170 kV of design value for each stage. These results show that the breakdown voltage of the accelerator was mainly determined by the gaps between the large-area grids. In this paper, the influence of non-uniform electric field and multi-stage grids on the voltage holding capabilities was also discussed.

Journal Articles

Recent R&D activities of negative-ion-based ion source for JT-60SA

Ikeda, Yoshitaka; Hanada, Masaya; Kamada, Masaki; Kobayashi, Kaoru; Umeda, Naotaka; Akino, Noboru; Ebisawa, Noboru; Inoue, Takashi; Honda, Atsushi; Kawai, Mikito; et al.

IEEE Transactions on Plasma Science, 36(4), p.1519 - 1529, 2008/08

 Times Cited Count:11 Percentile:41.29(Physics, Fluids & Plasmas)

The JT-60SA N-NBI system is required to inject 10 MW for 100 s at 500 keV. Three key issues should be solved for the JT-60SA N-NBI ion source. One is to improve the voltage holding capability. Recent R&D tests suggested that the accelerator with a large area of grids may need a high margin in the design of electric field and a long time for conditioning. The second issue is to reduce the grid power loading. It was found that some beamlets were strongly deflected due to beamlet-beamlet interaction and strike on the grounded grid. The grids are to be designed by taking account of beamlet-beamlet interaction in three-dimensional simulation. Third is to maintain the D- production for 100 s. A simple cooling structure is proposed for the active cooled plasma grid, where a key is the temperature gradient on the plasma grid for uniform D- production. The modified N-NBI ion source will start on JT-60SA in 2015.

JAEA Reports

Breakdown location without beam acceleration in the JT-60U negative ion source

Kobayashi, Kaoru; Hanada, Masaya; Kamada, Masaki; Akino, Noboru; Sasaki, Shunichi; Ikeda, Yoshitaka

JAEA-Technology 2008-042, 25 Pages, 2008/06

JAEA-Technology-2008-042.pdf:4.16MB

Breakdown locations of a JT-60U negative ion source were investigated to improve the voltage holding capability. The accelerator is characterized by three acceleration stages with large grids 0.45 m $$times$$ 1.1 m and large FRP insulators 1.8 m in inner diameter. High voltages were applied to each acceleration stage independently. Voltage holding capabilities of each stage were almost the same, $$sim$$ 120-130 kV, which was lower than the design acceleration voltage of 167 kV. Then, in order to identify whether the breakdowns occur in the gaps between grids or on the surface of the FRP insulators, high voltages were also applied to the accelerator with the grids and their support flanges removed. The voltage holding capabilities of three FRP insulators rapidly achieved 167 kV. These results indicate that the breakdowns mainly occur in the gaps between the acceleration grids and/or their support flanges.

JAEA Reports

Development of pellet injector using screw type pellet extruder; Improvement of pellet extruder for high frequency and long duration, and its test results

Ichige, Hisashi; Honda, Masao; Sasaki, Shunichi; Takenaga, Hidenobu; Matsuzawa, Yukihiro; Haga, Saburo; Ishige, Yoichi

JAEA-Technology 2007-037, 16 Pages, 2007/07

JAEA-Technology-2007-037.pdf:2.91MB

In JT-60U, pellet injector has been developed for improvement of density controllability and long operation duration consistent with a long pulse discharge ($$leqq$$65 s) started from FY2003. The injection frequency and operation duration were limited by extrusion speed and volume of the piston type pellet extruder, respectively, in the previous system. The screw type pellet extruder made in Russian company was newly installed in the system, which can continuously extrude the pellet at high speed and has been used in other fusion devices. After parts of the pellet injector system moved from JT-60 torus hall for efficient work, the previous piston type pellet extruder was changed to the new screw type pellet extruder and the tests for continuous pellet extrusion were performed. In the extrusion test using deuterium gas as a working gas, continuous pellet extrusion up to 330s was achieved, which is sufficient performance for applying it to JT-60U experiments.

Journal Articles

Improvement of secondary cooling system with a filter in JT-60

Nishiyama, Tomokazu; Sasaki, Shunichi; Miyo, Yasuhiko; Honda, Masao; Sakai, Tomonori*

Heisei-18-Nendo Nagoya Daigaku Sogo Gijutsu Kenkyukai Sochi Gijutsu Kenkyukai Hokokushu, p.102 - 105, 2007/03

no abstracts in English

Oral presentation

Breakdown experiment for accelerator of ion source in JT-60U N-NBI

Sasaki, Shunichi; Kobayashi, Kaoru; Hanada, Masaya; Ikeda, Yoshitaka; Akino, Noboru

no journal, , 

no abstracts in English

Oral presentation

Conditioning characteristic of DC 500keV electrostatic accelerator with large FRPs

Kobayashi, Kaoru; Hanada, Masaya; Kamada, Masaki; Akino, Noboru; Sasaki, Shunichi; Ikeda, Yoshitaka; Takahashi, Masahiro*; Yamano, Yasushi*; Kobayashi, Shinichi*

no journal, , 

no abstracts in English

Oral presentation

Upgrade of the NBI power supply system on JT-60U for a 100-s injection

Usui, Katsutomi; Kikuchi, Katsumi; Noto, Katsuya; Endo, Yasuei; Sasaki, Shunichi; Kawai, Mikito; Hanada, Masaya

no journal, , 

no abstracts in English

Oral presentation

Disassembly of the NBI system on JT-60U

Hanada, Masaya; Kawai, Mikito; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Usui, Katsutomi; Mogaki, Kazuhiko; Sasaki, Shunichi; Kikuchi, Katsumi; Oshima, Katsumi; et al.

no journal, , 

no abstracts in English

33 (Records 1-20 displayed on this page)