Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 35

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Upgrade of the 3-MeV linac for testing of accelerator components at J-PARC

Kondo, Yasuhiro; Hirano, Koichiro; Ito, Takashi; Kikuzawa, Nobuhiro; Kitamura, Ryo; Morishita, Takatoshi; Oguri, Hidetomo; Okoshi, Kiyonori; Shinozaki, Shinichi; Shinto, Katsuhiro; et al.

Journal of Physics; Conference Series, 1350, p.012077_1 - 012077_7, 2019/12

 Times Cited Count:1 Percentile:52.28(Physics, Particles & Fields)

We have upgraded a 3-MeV linac at J-PARC. The ion source is same as the J-PARC linac's, and the old 30-mA RFQ is replaced by a spare 50-mA RFQ, therefore, the beam energy is 3 MeV and the nominal beam current is 50 mA. The main purpose of this system is to test the spare RFQ, but also used for testing of various components required in order to keep the stable operation of the J-PARC accelerator. The accelerator has been already commissioned, and measurement programs have been started. In this paper, present status of this 3-MeV linac is presented.

Journal Articles

Performance test of J-PARC 324 MHz klystrons

Fuwa, Yasuhiro; Shinozaki, Shinichi; Chishiro, Etsuji; Hirane, Tatsuya; Fang, Z.*; Fukui, Yuji*; Futatsukawa, Kenta*; Mizobata, Satoshi*; Iwama, Yuhei*; Sato, Yoshikatsu*; et al.

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.611 - 613, 2019/10

In the J-PARC linac, a proton accelerator is operated using 45 units of 324 MHz and 972 MHz klystrons. In the future stabilization and advancement of the accelerator, it is important to acquire the klystron output characteristics near the maximum output accurately. In order to understand this characteristics, measurement of the characteristics of the replaced klystron for some reason such as discharge, as well as the new klystron. However, such measurements have not been performed because of the risk of damage including peripheral equipment due to discharge and the temporal interference with the operation of the accelerator. Therefore, we set up a klystron test stand in the linac building and measured the high-voltage characteristics and input/output characteristics of the klystron under various operating parameters. By using this measurement result, the characteristics of klystron can be obtained before installation, and it becomes possible to determine the optimum operation parameters and make effective plan of klystron replacements. In addition, basic data for predicting the degradation tendency of klystron was acquired by comparing the characteristics of the used and used klystron.

Journal Articles

Status of the J-PARC Linac LLRF system

Futatsukawa, Kenta*; Fang, Z.*; Fukui, Yuji*; Shinozaki, Shinichi; Mizobata, Satoshi; Sato, Yoshikatsu*

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.486 - 489, 2017/12

In the J-PARC linac, the LLRF systems consist of twenty-four 324-MHz systems and twenty-five 972-MHz systems for ACS cavities. The 324-MHz LLRF systems, which were installed in the stations of RFQ, DTLs, and SDTLs, have been used since the beginning of the J-PARC and are more than ten years into the development. Realistically speaking, the incensement of the failure frequency for these systems is expected. Additionally, it is difficult to maintain those for some discontinued boards of a digital feedback (DFB) and a digital feedforward (DFF) at cPCI, and the older OS and developing environment of software. Therefore, we are starting to study the new LLRF system of the next generation. In the present, we are exploring several possibilities of a new way and investigating each advantage and disadvantage. The project and the status of the development for the new system in the J-PARC linac LLRF are introduced.

Journal Articles

A 3 MeV linac for development of accelerator components at J-PARC

Kondo, Yasuhiro; Asano, Hiroyuki*; Chishiro, Etsuji; Hirano, Koichiro; Ishiyama, Tatsuya; Ito, Takashi; Kawane, Yusuke; Kikuzawa, Nobuhiro; Meigo, Shinichiro; Miura, Akihiko; et al.

Proceedings of 28th International Linear Accelerator Conference (LINAC 2016) (Internet), p.298 - 300, 2017/05

We have constructed a linac for development of various accelerator components at J-PARC. The ion source is same as the J-PARC linac's, and the RFQ is a used one in the J-PARC linac. The beam energy is 3 MeV and nominal beam current is 30 mA. The accelerator has been already commissioned, and the first development program, laser-charge-exchange experiment for the transmutation experimental facility, has been started. In this paper, present status of this 3-MeV linac is presented.

Journal Articles

Study of beam loading compensation with comb-like structure at J-PARC linac

Futatsukawa, Kenta*; Kobayashi, Tetsuya*; Sato, Yoshikatsu; Shinozaki, Shinichi; Fang, Z.*; Fukui, Yuji*; Mizobata, Satoshi; Michizono, Shinichiro*

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.327 - 331, 2016/11

In the J-PARC linac, an intermediate-pulse with the comb-like structure is shaped by kicking an unwanted beam by the chopper cavity. Therefore, the cavities lying downstream of the RF-chopper have the beam loading with this beam shape. The present feedforward system which assumes the averaged beam current and not the comb-like beam was operated in the present LLRF, because the beam current in the linac was lower than the design value. However, it has been difficult that the required precision for the RF system is satisfied with increasing beam current. Thus, we performed the beam study of the beam loading compensation with the same shapes as the intermediate-pulses. The positive results for the cavities of SDTL and DTL with high Q values were obtained compared to the present system. On the other hand, when this compensation system was used in the case of ACS cavities, the neighbor modes were excited by the input RF. We have to improve the FF system for the operation against the real beam.

Journal Articles

Development of klystron perveance and gain monitor in J-PARC Linac

Hori, Toshihiko*; Shinozaki, Shinichi; Sato, Yoshikatsu; Mizobata, Satoshi; Fukui, Yuji*; Futatsukawa, Kenta*

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.429 - 432, 2016/11

The triode klystrons with a modulating anode have been used for the J-PARC linac. Recently, we exchanged four klystrons due to the frequent discharge at a modulating anode in the klystron tube. In order to understand the discharge mechanism and to estimate the time to replace the klystron, we need to monitor the long term performance of the klystron such as the degradation of a cathode emission current and the RF gain of the klystron tube and so on. Therefore, we started to develop the klystron perveance and gain monitor module (NIM Standard one). In this paper, we will present the design concept of the monitor module, and the first performance test result using the module prototype.

Journal Articles

Development of beam scrapers using a 3-Mev linac at J-PARC

Hirano, Koichiro; Asano, Hiroyuki; Ishiyama, Tatsuya; Ito, Takashi; Okoshi, Kiyonori; Oguri, Hidetomo; Kondo, Yasuhiro; Kawane, Yusuke; Kikuzawa, Nobuhiro; Sato, Yoshikatsu; et al.

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.310 - 313, 2016/11

We have used a beam scraper with the incident angle of 65deg to reduce the beam power deposition density in the MEBT between a 324 MHz RFQ and a 50-MeV DTL of the J-PARC linac. The 65$$^{circ}$$ scraper was irradiated by the H$$^{-}$$ beam up to particle number of 1.47E22. We observed a lot of surface projections with several hundred micrometers high in the beam irradiation damage on the scraper by using the laser microscope. In order to study the limits of scrapers, we constructed a new 3 MeV linac at J-PARC. We will conduct the scraper irradiation test at the end of this year.

Journal Articles

Gyrotron development for high-power, long-pulse electron cyclotron heating and current drive at two frequencies in JT-60SA and its extension toward operation at three frequencies

Kobayashi, Takayuki; Moriyama, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Hoshino, Katsumichi; et al.

Nuclear Fusion, 55(6), p.063008_1 - 063008_8, 2015/06

 Times Cited Count:25 Percentile:77.57(Physics, Fluids & Plasmas)

A gyrotron enabling high-power, long-pulse oscillations at both 110 GHz and 138 GHz has been developed for electron cyclotron heating (ECH) and current drive (CD) in JT-60SA. Oscillations of 1 MW for 100 s have been demonstrated at both frequencies, for the first time as a gyrotron operating at two frequencies. The optimization of the anode voltage, or the electron pitch factor, using a triode gun was a key to obtain high power and high efficiency at two frequencies. It was also confirmed that the internal losses in the gyrotron were sufficiently low for expected long pulse operation at the higher power level of $$sim$$1.5 MW. Another important result is that an oscillation at 82 GHz, which enables to use fundamental harmonic waves in JT-60SA while the other two frequencies are used as second harmonics waves, was demonstrated up to 0.4 MW for 2 s. These results of the gyrotron development significantly contribute to enhancing operation regime of the ECH/CD system in JT-60SA.

Journal Articles

Development of a dual frequency (110/138 GHz) gyrotron for JT-60SA and its extension to an oscillation at 82 GHz

Kobayashi, Takayuki; Moriyama, Shinichi; Isayama, Akihiko; Sawahata, Masayuki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Yokokura, Kenji; et al.

EPJ Web of Conferences, 87, p.04008_1 - 04008_5, 2015/03

 Times Cited Count:5 Percentile:83.62(Physics, Fluids & Plasmas)

A dual-frequency gyrotron, which can generate 110 GHz and 138 GHz waves independently, is being developed in JAEA to enable electron cyclotron heating (ECH) and current drive (ECCD) in a wider range of plasma discharge conditions of JT-60SA. Operation for the gyrotron conditioning and parameter optimization toward 1 MW for 100 s, which is the target output power and pulse length for JT-60SA, is in progress without problems. Oscillations of 1 MW for 10 s and 0.51 MW for 198 s were obtained, so far, at both frequencies. In addition, an oscillation (0.3 MW for 20 ms) at 82 GHz was demonstrated as an additional frequency of the dual-frequency gyrotron which shows a possibility of the use of fundamental harmonic wave in JT-60SA.

JAEA Reports

Development of instrument to measure transmission power density distribution using dielectric disk in millimeter waveguide

Yokokura, Kenji; Moriyama, Shinichi; Kobayashi, Takayuki; Hiranai, Shinichi; Sawahata, Masayuki; Terakado, Masayuki; Hinata, Jun; Wada, Kenji; Sato, Yoshikatsu; Hoshino, Katsumichi; et al.

JAEA-Technology 2014-002, 64 Pages, 2014/03

JAEA-Technology-2014-002.pdf:6.83MB

A new instrument has been developed to measure spatial distribution of power density and total power of the millimeter wave, by measuring temperature rise of dielectric material inserted in the waveguide. For a measurement, a dielectric disk with thermally insulated support is inserted into the few millimeters gap in the waveguide. The disk is heated by the millimeter wave pulse for 0.1$$sim$$0.2 s, and immediately after the pulse, it is pulled up and its temperature distribution is measured by an infrared camera to estimate the spatial power density distribution of the millimeter wave. In the other hand, total transmission power is estimated by the disk temperature reached equilibrium. In the measurement test, deformation of the power density distribution was successfully detected when the mirror angle was intentionally changed in the matching optics unit (MOU) at the waveguide input from the gyrotron. The test result shows that the instrument is effective for both adjustment of MOU without opening the vacuum boundary and to detect any abnormal transmission during operation of the ECH system. The test also shows high reliability of the instrument which stands with 1 MW high power transmission without any arcing or pressure rise in vacuum region. The instrument will be contributed to keep good condition of high power long pulse ECH system by detecting abnormal transmission in the waveguide in operation without open vacuum boundary.

Journal Articles

Development of a linear motion antenna for the JT-60SA ECRF system

Moriyama, Shinichi; Kobayashi, Takayuki; Isayama, Akihiko; Hoshino, Katsumichi; Suzuki, Sadaaki; Hiranai, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Hinata, Jun; et al.

Fusion Engineering and Design, 88(6-8), p.935 - 939, 2013/10

 Times Cited Count:4 Percentile:32.48(Nuclear Science & Technology)

An antenna having a first mirror driven in the linear motion (LM) and a fixed second mirror was proposed for electron cyclotron range of frequency (ECRF) heating and current drive system, to minimize the risk of cooling-water-leakage. Basic mechanical feasibilities of the bellows covering the movable structures of the antenna were previously investigated using a mock-up. This time, a support structure of the shaft has been designed using a metallic sliding bearing with solid lubricant. The sliding bearing can support combination of linear and rotational motions while a ball bearing supports either linear or rotational motion. We have newly installed the sliding bearing into the mock-up. A vacuum pumping test has been carried out paying attention to the influence of the solid lubricant by mass analysis. To design the LM antenna for JT-60SA in detail, heating and current drive characteristics for typical experimental scenarios of JT-60SA has been investigated by calculation.

Journal Articles

Dual frequency ECRF system development for JT-60SA

Kobayashi, Takayuki; Isayama, Akihiko; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Yokokura, Kenji; et al.

Fusion Science and Technology, 63(1T), p.160 - 163, 2013/05

 Times Cited Count:7 Percentile:49.28(Nuclear Science & Technology)

A dual frequency electron cyclotron range of frequency system has been developed for JT-60SA, by which a second frequency (135 $$sim$$ 140 GHz) is generated in addition to the first frequency of 110 GHz. A development of a dual frequency gyrotron is a key to realize the dual frequency system. The second frequency was chosen to be 138 GHz from the above frequency range from the viewpoint of gyrotron design. In order to realize high-power ($$>$$ 1 MW) and long-pulse operation for both frequencies, we designed main components of the gyrotron (the diamond window, cavity resonator and quasi-optical mode converter). We found the optimum parameter set from the parameters of these components, which has discrete characteristics. It was confirmed that the output power higher than 1 MW is obtained for both frequencies as a result of numerical design. Based on the above design, a dual frequency gyrotron was newly fabricated. In the conditioning operation, an output power was obtained as we expected.

Journal Articles

Dual frequency gyrotron development for JT-60SA

Kobayashi, Takayuki; Isayama, Akihiko; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Yokokura, Kenji; et al.

Proceedings of 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2012) (USB Flash Drive), 2 Pages, 2012/09

A new dual frequency (110 GHz and 138 GHz) gyrotron development began for JT-60SA. An output power and efficiency higher than 1 MW and 30% with a peak heat load lower than 1.4 kW/cm$$^{2}$$ were obtained for both frequencies in calculation. High mode conversion efficiencies of the quasioptical mode converter (96.8% for 110 GHz and 98.3% for 138 GHz), which is higher than the previously developed 110 GHz long pulse gyrotron (96.5%), was obtained. The new gyrotron was fabricated and conditioning operation has been started from the middle of June 2012. The gyrotron output power of approximately 200 kW was obtained, so far, as we expected in the design of the gyrotron at low beam current of 10 A and low beam voltage of 75 kV.

Journal Articles

Recent results from the development of the electron cyclotron heating system for JT-60SA toward high-power long-pulse operations

Isayama, Akihiko; Kobayashi, Takayuki; Yokokura, Kenji; Shimono, Mitsugu; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Hinata, Jun; et al.

Plasma and Fusion Research (Internet), 7(Sp.1), p.2405029_1 - 2405029_5, 2012/05

no abstracts in English

Journal Articles

Progress of high-power and long-pulse ECRF system development in JT-60

Kobayashi, Takayuki; Isayama, Akihiko; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Sato, Fumiaki; et al.

Nuclear Fusion, 51(10), p.103037_1 - 103037_10, 2011/10

 Times Cited Count:19 Percentile:62.41(Physics, Fluids & Plasmas)

A new gyrotron operation technique to increase oscillation efficiency was developed on the JT 60 ECRF system. The electron pitch factor was optimized by controlling anode voltage within 0.1 s after the start of the operation. By applying this technique, the gyrotron output power of 1.5 MW for 4 s was recorded, for the first time. The reduced collector heat load at 1.5 MW operations was reduced by 20% and it will be acceptable for longer pulse operation. A new gyrotron with an improved mode converter was developed in order to demonstrate reduction of the stray radiation which had limited the pulse length. The stray radiation was reduced to 1/3 of that of the original gyrotron. A conditioning operation of the improved gyrotron is proceeding up to 31 s at 1 MW. These progresses significantly contribute to enhancing the high power and long pulse capability of the ECRF system toward JT 60SA.

Oral presentation

Operational experience on ECRF system in JT-60U and development for JT-60SA

Moriyama, Shinichi; Kobayashi, Takayuki; Isayama, Akihiko; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; et al.

no journal, , 

As a result of inspection of the ECRF antennas after the JT-60U operation, no large damages were found on them although the color of the mirror surfaces were slightly changed probably due to coating of thin film and some evidences of arcing were found. In the statistical analysis on the 9-year operation of the ECRF system, the success rate, which is defined as the ratio of actual injection time to preprogrammed one was higher than 0.85 in the last 3 years of the operation in average of 4 lines. To meet the long-pulse requirement of JT-60SA, development of long-pulse gyrotron with improved mode converter is on going aiming at 1 MW, 100 s. It was confirmed that the diffraction loss was remarkably decreased and the temperature of the DC break cooling water, which limited the pulse length, was saturated at about half of that before the improvement. As the result, the pulse length reached 17 s at 1 MW, and 30 s at 0.6 MW (18 MJ) recently, and further conditioning will be continued.

Oral presentation

Development of ECRF heating and current drive system for JT-60SA

Moriyama, Shinichi; Kobayashi, Takayuki; Isayama, Akihiko; Hoshino, Katsumichi; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; et al.

no journal, , 

no abstracts in English

Oral presentation

Design and test of launcher and transmission line for JT-60SA ECRF system

Kobayashi, Takayuki; Isayama, Akihiko; Suzuki, Sadaaki; Hiranai, Shinichi; Wada, Kenji; Hinata, Jun; Sato, Yoshikatsu; Yokokura, Kenji; Hoshino, Katsumichi; Moriyama, Shinichi

no journal, , 

Design and test of launcher and transmission line for JT-60SA electron cyclotron range of frequency (ECRF) system have been carried out. Spatial profile of temperature rise of 31.75 mm waveguide components, which was used in the previous JT-60, was measured for high-power and long-pulse transmission. It was clarified that improvements of cooling efficiency or change in design is required for achieving 1 MW, 100 s transmission, which is required in JT-60SA. Thus 60.3 mm waveguide components was newly installed. In the preliminary test of the new transmission line, unexpected arcing and increase in vacuum pressure was not observed, and the system worked as expected. As for the launcher, a preliminary layout of the launcher and support was improved in order to keep acceptable distance from systems around the ECRF launcher. Moreover, a mock-up of an improved support structure of the driving shaft using solid lubricants was fabricated in order to improve reliability of the structure.

Oral presentation

Development on ECRF system for JT-60SA

Moriyama, Shinichi; Kobayashi, Takayuki; Isayama, Akihiko; Yokokura, Kenji; Hoshino, Katsumichi; Shimono, Mitsugu; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; et al.

no journal, , 

Development and design of ECRF system are being carried on toward JT-60SA. In spite of the huge earthquake on March 11th, damage on the system was small, and we restart the gyrotron operation after 2 months of careful inspection and test. The diffraction loss in the gyrotron was kept low and the temperature of the DC break cooling water, which limited the pulse length, was saturated at about half of that before the improvement of the mode convertor. The pulse length reached 31 s at 1 MW and 99 s at 0.3 MW. In JT-60SA, ECRF of about 130-140 GHz would make possible central heating/current drive at BT = 2.25 T. From this point of view, development of dual frequency gyrotron was started. In calculation, oscillation conditions with efficiency of 0.4 were obtained for TE22,8 mode (110 GHz) and TE27,10 mode (137.6 GHz). Fabrication of the gyrotron has just been started. The high power test will be started in the next fiscal year.

Oral presentation

Design and development of electron cyclotron heating and current drive system for JT-60SA

Kobayashi, Takayuki; Isayama, Akihiko; Hoshino, Katsumichi; Yokokura, Kenji; Shimono, Mitsugu; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; et al.

no journal, , 

Design and development of high-power long-pulse electron cyclotron heating and current drive system for JT-60SA have been progressed. High power transmission test using newly developed components with a waveguide inner diameter of 60.3 mm was carried out. A conditioning operation was progressed to 5 s with an output power of 0.5 MW, so far, within a few weeks without significant trouble. The other progress was made to develop the dual frequency system with an additional frequency of 137.6 GHz in order to enhance operation regime. Output power higher than 1 MW with oscillation efficiency much higher than 30% was obtained for the design of a dual frequency gyrotron for both 110 GHz and 137.6 GHz.

35 (Records 1-20 displayed on this page)