Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 35

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Localized magnetic excitations in the fully frustrated dimerized magnet Ba$$_{2}$$CoSi$$_{2}$$O$$_{6}$$Cl$$_{2}$$

Kurita, Nubuyuki*; Yamamoto, Daisuke*; Kanesaka, Takuya*; Furukawa, Nobuo*; Kawamura, Seiko; Nakajima, Kenji; Tanaka, Hidekazu*

Physical Review Letters, 123(2), p.027206_1 - 027206_6, 2019/07

 Times Cited Count:4 Percentile:36.66(Physics, Multidisciplinary)

Journal Articles

Development of risk assessment methodology against natural external hazards for sodium-cooled fast reactors; Project overview and margin assessment methodology against volcanic eruption

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; et al.

Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 12 Pages, 2016/10

This paper describes mainly volcanic margin assessment methodology development in addition to the project overview. The volcanic tephra could potentially clog filters of air-intakes that need the decay heat removal. The filter clogging can be calculated by atmospheric concentration and fallout duration of the volcanic tephra and also suction flow rate of each component. In this paper, the margin was defined as a grace period to a filter failure limit. Consideration is needed only when the grace period is shorter than the fallout duration. The margin by component was calculated using the filter failure limit and the suction flow rate of each component. The margin by sequence was evaluated based on an event tree and the margin by component. An accident management strategy was also suggested to extend the margin; for instance, manual trip of the forced circulation operation, sequential operation of three air coolers, and covering with pre-filter.

Journal Articles

Development of risk assessment methodology of decay heat removal function against natural external hazards for sodium-cooled fast reactors; Project overview and volcanic PRA methodology

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; et al.

Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 10 Pages, 2016/06

This paper describes mainly volcanic probabilistic risk assessment (PRA) methodology development for sodium-cooled fast reactors in addition to the project overview. The volcanic ash could potentially clog air filters of air-intakes that are essential for the decay heat removal. The degree of filter clogging can be calculated by atmospheric concentration of ash and tephra fallout duration and also suction flow rate of each component. The atmospheric concentration can be calculated by deposited tephra layer thickness, tephra fallout duration and fallout speed. This study evaluated a volcanic hazard using a combination of tephra fragment size, layer thickness and duration. In this paper, each component functional failure probability was defined as a failure probability of filter replacement obtained by using a grace period to a filter failure limit. Finally, based on an event tree, a core damage frequency was estimated about 3$$times$$10$$^{-6}$$/year in total by multiplying discrete hazard probabilities by conditional decay heat removal failure probabilities. A dominant sequence was led by the loss of decay heat removal system due to the filter clogging after the loss of emergency power supply. A dominant volcanic hazard was 10$$^{-2}$$ kg/m$$^{3}$$ of atmospheric concentration, 0.1 mm of tephra diameter, 50-75 cm of deposited tephra layer thickness, and 1-10 hr of tephra fallout duration.

Journal Articles

Development of risk assessment methodology against natural external hazards for sodium-cooled fast reactors; Project overview and strong wind PRA methodology

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; et al.

Proceedings of 2015 International Congress on Advances in Nuclear Power Plants (ICAPP 2015) (CD-ROM), p.454 - 465, 2015/05

This paper describes mainly strong wind PRA methodology development in addition to the project overview. In developing the strong wind PRA methodology, hazard curves were estimated by using Weibull and Gumbel distributions based on weather data recorded in Japan. The obtained hazard curves were divided into five discrete categories for event tree quantification. Next, failure probabilities for decay heat removal related components were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or outtake in the decay heat removal system, and fragility caused by the missile impacts. Finally, based on the event tree, the core damage frequency was estimated about 6$$times$$10$$^{-9}$$/year by multiplying the discrete hazard probabilities in the Gumbel distribution by the conditional decay heat removal failure probabilities. A dominant sequence was led by the assumption that the operators could not extinguish fuel tank fire caused by the missile impacts and the fire induced loss of the decay heat removal system.

Journal Articles

Development of risk assessment methodology of decay heat removal function against external hazards for sodium-cooled fast reactors, 1; Project overview and margin assessment methodology against snow

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; et al.

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 10 Pages, 2015/05

This paper describes mainly snow margin assessment methodology development in addition to the project overview. For the snow margin assessment, the index is a combination of a snowfall rate and duration. Since snow removal can be expected during the snowfall, the developed snow margin assessment methodology is such that the margin was regarded as the snowfall duration up to the decay heat removal failure which was defined as when the snow removal rate was smaller than the snowfall rate.

Journal Articles

Development of margin assessment methodology of decay heat removal function against external hazards, 1; Project overview and snow PRA methodology

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; et al.

Proceedings of 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10) (USB Flash Drive), 12 Pages, 2014/12

This paper describes mainly snow probabilistic risk assessment (PRA) methodology development in addition to the project overview. In snow hazard category, the accident sequence was evaluated by producing event trees which consist of several headings representing the loss of decay heat removal. Snow removal action and manual operation of the air cooler dampers were introduced into the event tree as accident managements. The snow PRA showed less than 10$$^{-6}$$/reactor-year of core damage frequency.

Journal Articles

Metallurgical analysis of lithium test assembly operated for 1200 h

Furukawa, Tomohiro; Kondo, Hiroo; Kanemura, Takuji; Hirakawa, Yasushi; Yamaoka, Nobuo*; Hoashi, Eiji*; Suzuki, Sachiko*; Horiike, Hiroshi*

Fusion Engineering and Design, 89(7-8), p.1674 - 1678, 2014/10

 Times Cited Count:1 Percentile:8.88(Nuclear Science & Technology)

One key issue in the development of the IFMIF is the corrosion/erosion of the lithium components. At Osaka University, lithium free-surface flow experiments to verify the design of the IFMIF target have been carried out, and the test assembly was operated in high-speed lithium flow for 1200 hours at 300 $$^{circ}$$C. Since the test assembly is important to understand the corrosion/erosion behavior as the demonstration experimental data, the metallurgical analysis was been performed. Slight irregularities which were trace of high-speed lithium flow were observed at the tip of the nozzle. On the other hand, mottled unevenness with many micro-cracks of a few micrometer depths was observed at the inlet of the nozzle, whose velocity ratio was 0.1-0.4 as compared with the nozzle tip. It was estimated that the phenomena was caused by carburizing from liquid lithium, and it was newly proven that carbon control in lithium was also important for corrosion / erosion protection of the IFMIF components.

Journal Articles

Evaluation of applicability of laser-based distance meter to measure Li-jet thickness for IFMIF/EVEDA project

Kanemura, Takuji; Kondo, Hiroo; Hoashi, Eiji*; Suzuki, Sachiko*; Yamaoka, Nobuo*; Horiike, Hiroshi*; Furukawa, Tomohiro; Hirakawa, Yasushi; Wakai, Eiichi

Fusion Engineering and Design, 89(7-8), p.1642 - 1647, 2014/10

 Times Cited Count:14 Percentile:70.2(Nuclear Science & Technology)

In the Engineering Validation and Engineering Design Activities (EVEDA) of the International Fusion Materials Irradiation Facility (IFMIF), a device to measure thickness variation of a high-speed (15 m/s) liquid lithium (Li) jet must be developed. The required measurement precision is 0.1 mm. For this purpose, we newly focused on a laser-based distance meter. This paper describes the result of an applicability test of the new sensor conducted in the Osaka University Li Loop. In the experiment, thickness variation of a Li jet (10 mm in thickness) was measured at the sampling frequency of 500 kHz in the velocity range of 10 to 15 m/s at the Li temperature of 573 K under argon atmosphere of 0.12 MPa. To evaluate the applicability of the device, the measurement precision of the Li level was evaluated. As a result, the precision was approximately 9 $$mu$$m. Thus, we concluded that the laser-based distance meter is applicable to the measurement of the Li target thickness.

Journal Articles

Development of margin assessment methodology of decay heat removal function against external hazards; Project overview and preliminary risk assessment against snow

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; Takata, Takashi*

Proceedings of 12th Probabilistic Safety Assessment and Management Conference (PSAM-12) (USB Flash Drive), 11 Pages, 2014/06

This paper describes mainly preliminary risk assessment against snow in addition to the project overview. The snow hazard indexes are the annual maximum snow depth and the annual maximum daily snowfall depth. Snow hazard curves for the two indexes were developed using 50 year weather data at the typical sodium-cooled fast reactor site in Japan. In this paper, the snow risk assessment showed less than 10$$^{-6}$$/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1-2m/day of snowfall velocity and 0.75-1.0 day of snowfall duration. Sensitivity analyses indicated important human actions, which were the improvement of snow removal velocity and the awareness of snow removal necessity.

Journal Articles

Fabrication and performance test of contact-type liquid level sensor for measuring thickness variation of liquid lithium jet in the IFMIF/EVEDA lithium test loop

Kanemura, Takuji; Kondo, Hiroo; Hoashi, Eiji*; Suzuki, Sachiko*; Yamaoka, Nobuo*; Horiike, Hiroshi*; Furukawa, Tomohiro; Hirakawa, Yasushi; Ida, Mizuho; Matsushita, Izuru*; et al.

Fusion Engineering and Design, 88(9-10), p.2547 - 2551, 2013/10

 Times Cited Count:4 Percentile:32.48(Nuclear Science & Technology)

In the Engineering Validation and Engineering Design Activities (EVEDA) project of the International Fusion Materials Irradiation Facility (IFMIF), thickness variation of a liquid lithium (Li) jet simulating the IFMIF Li target is to be measured in the EVEDA Li Test Loop. This paper presents fabrication and performance tests results of a contact-type liquid level sensor for measuring the jet thickness variation. The sensor can detect contacts between a probe and Li, and analysis of the contact signals yields average jet thickness and amplitude distribution. One of the key fabrication requirements is to drive the probe by 0.1 mm step with positioning precision of 0.01 mm under the vacuum condition of 10$$^{-3}$$Pa. To achieve such requirements, a high torque motor reducer and a friction-reduced ball screw were selected. As a result of the performance tests, the measurement results of the positioning resolution and precision were 0.1 mm and 0.01 mm, respectively.

Journal Articles

Initial results of the large liquid lithium test loop for the IFMIF target

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Nakamura, Kazuyuki; Horiike, Hiroshi*; Yamaoka, Nobuo*; Matsushita, Izuru*; et al.

Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 8 Pages, 2013/03

Construction and initial performance tests of EVEDA (Engineering Validation and Engineering Design Activities) Lithium Test Loop (ELTL) were completed and therefore one of the major milestones in the engineering validation toward IFMIF (International Fusion Materials Irradiation Facility) was accomplished. The ELTL, which holds 2.5-ton Li, is a proto-type of a Li target facility of the IFMIF and is the largest-ever liquid lithium loop in the history of the fusion research.

Journal Articles

Development of lithium target system in engineering validation and engineering design activity of the International Fusion Materials Irradiation Facility (IFMIF/EVEDA)

Wakai, Eiichi; Kondo, Hiroo; Sugimoto, Masayoshi; Fukada, Satoshi*; Yagi, Juro*; Ida, Mizuho; Kanemura, Takuji; Furukawa, Tomohiro; Hirakawa, Yasushi; Watanabe, Kazuyoshi; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 88(12), p.691 - 705, 2012/12

AA2012-1008.pdf:2.42MB

no abstracts in English

Journal Articles

Completion of IFMIF/EVEDA lithium test loop construction

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Horiike, Hiroshi*; Yamaoka, Nobuo*; Matsushita, Izuru*; et al.

Fusion Engineering and Design, 87(5-6), p.418 - 422, 2012/08

 Times Cited Count:24 Percentile:84.89(Nuclear Science & Technology)

The EVEDA Li test loop (ELTL) successfully completed its construction and installation of a total of 2.5-ton Li in the frame work of the IFMIF/EVEDA as one of the ITER-BA. The construction was started on Nov. 2009 in the Oarai site of the Japan Atomic Energy Agency and completed on the middle of Nov. 2010 after passing an authority inspection by a fire department in Oarai town. Subsequently, the 2.5-ton Li was installed to the ELTL by using a glove box. The nitrogen concentration in the 2.5-ton Li was found to be 127 wppm.

Journal Articles

Engineering design of contact-type liquid level sensor for measuring thickness validation of liquid lithium jet in IFMIF/EVEDA lithium test loop

Kanemura, Takuji; Kondo, Hiroo; Suzuki, Sachiko*; Hoashi, Eiji*; Yamaoka, Nobuo*; Horiike, Hiroshi*; Furukawa, Tomohiro; Ida, Mizuho; Nakamura, Kazuyuki; Matsushita, Izuru*; et al.

Fusion Science and Technology, 62(1), p.258 - 264, 2012/07

 Times Cited Count:4 Percentile:31.96(Nuclear Science & Technology)

In the Engineering Validation and Engineering Design Activities (EVEDA) project of the International Fusion Materials Irradiation Facility (IFMIF), which is one of the Broader Approach (BA) activities, thickness variation of a liquid lithium (Li) jet simulating the IFMIF Li target is planned to be measured in the EVEDA Li Test Loop (ELTL). For this purpose, a contact-type liquid level sensor was developed, which can detect contacts between a probe and Li. Analysis of the contact signals yields average jet thickness and amplitude distribution. One of the key development requirements is to drive the probe by 0.1 mm step with positioning accuracy of 0.01 mm under the vacuum condition of 10$$^{-3}$$Pa. To satisfy such a requirement, the sensor's own weight load and moment load were calculated, and based on those calculation results a powerful motor and a friction-reduced ball screw were selected and strong structure was adopted. We have successfully completed the design work of the sensor.

Journal Articles

IFMIF/EVEDA lithium test loop; Design and fabrication technology of target assembly as a key component

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Nakamura, Kazuyuki; Ida, Mizuho; Watanabe, Kazuyoshi; Kanemura, Takuji; Wakai, Eiichi; Horiike, Hiroshi*; Yamaoka, Nobuo*; et al.

Nuclear Fusion, 51(12), p.123008_1 - 123008_12, 2011/12

 Times Cited Count:39 Percentile:82.4(Physics, Fluids & Plasmas)

The Engineering Validation and Engineering Design Activity (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) is proceeded as one of the ITER Broader Approach (BA) activities. The EVEDA Li test loop (ELTL) is aimed at validating stability of the Li target and feasibility of a Li purification system as the key issues. In this paper, the design of the ELTL especially of a target assembly in which the Li target is produced by the contraction nozzle is presented.

Journal Articles

Completion of IFMIF/EVEDA Li test loop construction and commissioning

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Horiike, Hiroshi*; Yamaoka, Nobuo*; Matsushita, Izuru*; et al.

Proceedings of Plasma Conference 2011 (PLASMA 2011) (CD-ROM), 2 Pages, 2011/11

The EVEDA Li test loop (ELTL) successfully completed its construction and commissioning in the frame work of the IFMIF/EVEDA as one of the ITER-BA. The construction was started on Nov. 2009 in the O-arai site of the Japan Atomic Energy Agency and completed on the middle of Nov. 2010. In the commissioning conducted subsequently, the following tests were performed: (1) Li ingots installation into the ELTL, (2) Li charging and draining operation, (3) Li circulation tests. In a final phase of the circulation test, stable liquid Li flow at a velocity of 5 m/s was successfully achieved.

Journal Articles

Present status of Japanese tasks for lithium target facility under IFMIF/EVEDA

Nakamura, Kazuyuki; Furukawa, Tomohiro; Hirakawa, Yasushi; Kanemura, Takuji; Kondo, Hiroo; Ida, Mizuho; Niitsuma, Shigeto; Otaka, Masahiko; Watanabe, Kazuyoshi; Horiike, Hiroshi*; et al.

Fusion Engineering and Design, 86(9-11), p.2491 - 2494, 2011/10

 Times Cited Count:10 Percentile:60.88(Nuclear Science & Technology)

In IFMIF/EVEDA, tasks for lithium target system are shared to 5 validation tasks (LF1-5) and a design task (LF6). The purpose of LF1 task is to construct and operate the EVEDA lithium test loop, and JAEA has a main responsibility to the performance of the Li test loop. LF2 is a task for the diagnostics of the Li test loop and IFMIF design. Basic research for the diagnostics equipment has been completed, and the construction for the Li test loop will be finished before March in 2011. LF4 is a task for the purification systems with nitrogen and hydrogen. Basic research for the purification equipment has been completed, and the construction of the nitrogen system for the Li test loop will be finished before March in 2011. LF5 is a task for the remote handling system with the target assembly. JAEA has an idea to use the laser beam for cutting and welding of the lip part of the flanges. LF6 is a task for the design of the IFMIF based on the validation experiments of LF1-5.

Journal Articles

Engineering design of IFMIF/EVEDA lithium test loop; Electro-magnetic pump and pressure drop

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Ida, Mizuho; Watanabe, Kazuyoshi; Kanemura, Takuji; Horiike, Hiroshi*; Yamaoka, Nobuo*; Matsushita, Izuru*; et al.

Proceedings of 19th International Conference on Nuclear Engineering (ICONE-19) (CD-ROM), 7 Pages, 2011/10

Engineering Validation and Engineering Design Activities (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) were started from July 2007 under an international agreement called ITER Broader Approach. As a major Japanese activity, EVEDA Li test loop (ELTL) to simulate hydraulic and impurity conditions of IFMIF has already designed and is under construction, in which feasibility of hydraulic stability of the liquid Li target, the purification systems of hot traps are major key issues to be validated in this loop. This paper presents the engineering design of the main electro-magnetic pump of the ELTL including the pressure drop calculation and evaluation of the cavitation inception.

Journal Articles

Diagnostics of high-speed liquid lithium jet for IFMIF/EVEDA lithium test loop

Kanemura, Takuji; Kondo, Hiroo; Sugiura, Hirokazu*; Horiike, Hiroshi*; Yamaoka, Nobuo*; Furukawa, Tomohiro; Ida, Mizuho; Matsushita, Izuru*; Nakamura, Kazuyuki

Proceedings of 19th International Conference on Nuclear Engineering (ICONE-19) (CD-ROM), 7 Pages, 2011/10

Regarding R&Ds on the International Fusion Materials Irradiation Facility (IFMIF), validation of hydraulic stability of a liquid Li jet simulating the IFMIF Li target is of crucial importance and thus, is planned to be performed using EVEDA Li test loop. This paper presents diagnostics of the Li jet to be implemented in validation tests of the jet stability. In the tests, the following physical parameters need to be measured; thickness of the jet; height, length and frequency of free-surface waves; and Li evaporation rate. A high-speed video (HSV) camera is planned to be used for understanding of detailed structure of free-surface waves, and the HSV images are to be analyzed to obtain wave velocity and frequency. To measure jet thickness and wave height, a contact-type liquid level sensor is to be used. With regard to Li evaporation rate, deposition of Li on the specimens installed near the free surface is to be measured. In addition, frequency change of a crystal quartz will be utilized.

Journal Articles

Engineering design and construction of IFMIF/EVEDA lithium test loop; Design and fabrication of integrated target assembly

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Nakamura, Hiroo*; Ida, Mizuho; Watanabe, Kazuyoshi; Miyashita, Makoto*; Horiike, Hiroshi*; Yamaoka, Nobuo*; Kanemura, Takuji; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2010/10

The Engineering Validation and Engineering Design Activity (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) is proceeded as one of the ITER Broader Approach (BA) activities. The EVEDA Li test loop (ELTL) is aimed at validating stability of the Li target and feasibility of a Li purification system as the key issues. In this paper, the design of the ELTL especially of a target assembly in which the Li target is produced by the contraction nozzle is presented.

35 (Records 1-20 displayed on this page)