Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Research on engineering technology in the full-scale demonstration of EBS and operation technology for HLW disposal; Research report in 2013 (Joint research)

Fujita, Tomoo; Tanai, Kenji; Nakayama, Masashi; Sawada, Sumiyuki*; Asano, Hidekazu*; Saito, Masahiko*; Yoshino, Osamu*; Kobayashi, Masato*

JAEA-Research 2014-031, 44 Pages, 2015/03

JAEA-Research-2014-031.pdf:16.11MB

Japan Atomic Energy Agency (JAEA) and Radioactive Waste Management Funding and Research Center (RWMC) concluded the letter of cooperation agreement on the research and development of radioactive waste disposal in April, 2005, and have been carrying out the collaboration work based on the agreement. JAEA have been carrying out the Horonobe Underground Research Laboratory (URL) Project which is intended for a sedimentary rock in the Horonobe town, Hokkaido, since 2001. In the project, geoscientific research and research and development on geological disposal technology are being promoted. Meanwhile, the government (the Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry) has been promoting construction of equipments for the full-scale demonstration of engineered barrier system (EBS) and operation technology for high-level radioactive waste (HLW) disposal since 2008, to enhance public's understanding to the geological disposal of HLW, e.g. using underground facility. RWMC received an order of the project in fiscal year 2012 (2011/2012) continuing since fiscal year 2008 (2008/2009). Since topics in this project are included in the Horonobe URL Project, JAEA carried out this project as collaboration work continuing since fiscal year 2008. This report summarizes the results of engineering technology carried out in this collaboration work in fiscal year 2013. In fiscal year 2013, emplacement tests using buffer material block for the vertical emplacement concept were carried out and visualization tests for water penetration in buffer material were carried out.

JAEA Reports

Research on engineering technology in the full-scale demonstration of EBS and operation technology for HLW disposal; Research report in 2012 (Joint research)

Nakatsuka, Noboru; Sato, Haruo; Tanai, Kenji; Nakayama, Masashi; Sawada, Sumiyuki*; Asano, Hidekazu*; Saito, Masahiko*; Yoshino, Osamu*; Tsukahara, Shigeki*; Hishioka, Sosuke*; et al.

JAEA-Research 2013-034, 70 Pages, 2014/01

JAEA-Research-2013-034.pdf:9.11MB

Japan Atomic Energy Agency (JAEA) and Radioactive Waste Management Funding and Research Center (RWMC) concluded the letter of cooperation agreement on the research and development of radioactive waste disposal in April, 2005, and have been carrying out the collaboration work based on the agreement. JAEA have been carrying out the Horonobe Underground Research Laboratory (URL) Project which is intended for a sedimentary rock in the Horonobe town, Hokkaido, since 2001. In the project, geoscientific research and research and development on geological disposal technology are being promoted. Meanwhile, the government (the Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry) has been promoting construction of equipments for the full-scale demonstration of engineered barrier system and operation technology for high-level radioactive waste (HLW) disposal since 2008, to enhance public's understanding to the geological disposal of HLW, e.g. using underground facility. RWMC received an order of the project in fiscal year 2012 (2011/2012) continuing since fiscal year 2008 (2008/2009). Since topics in this project are included in the Horonobe URL Project, JAEA carried out this project as collaboration work continuing in fiscal year 2008. This report summarizes the results of engineering technology carried out in this collaboration work in fiscal year 2012. In fiscal year 2012, part of the equipments for emplacement of buffer material was produced and visualization test for water penetration in buffer material were carried out.

JAEA Reports

Research on engineering technology in the full-scale demonstration of EBS and operation technology for HLW disposal; Research report in 2011 (Joint research)

Nakatsuka, Noboru; Sato, Haruo; Tanai, Kenji; Sugita, Yutaka; Nakayama, Masashi; Sawada, Sumiyuki*; Niinuma, Hiroaki*; Asano, Hidekazu*; Saito, Masahiko*; Yoshino, Osamu*; et al.

JAEA-Research 2013-027, 34 Pages, 2013/11

JAEA-Research-2013-027.pdf:5.84MB

Japan Atomic Energy Agency (JAEA) and Radioactive Waste Management Funding and Research Center (RWMC) concluded the letter of cooperation agreement on the research and development of radioactive waste disposal in April, 2005, and have been carrying out the collaboration work based on the agreement. JAEA have been carrying out the Horonobe Underground Research Laboratory (URL) Project which is intended for a sedimentary rock in the Horonobe town, Hokkaido, since 2001. In the project, geoscientific research and research and development on geological disposal technology are being promoted. Meanwhile, the government (the Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry) has been promoting construction of equipments for the full-scale demonstration of engineered barrier system and operation technology for high-level radioactive waste (HLW) disposal since 2008, to enhance public's understanding to the geological disposal of HLW, e.g. using underground facility. RWMC received an order of the project in fiscal year 2010 (2010/2011) continuing since fiscal year 2008 (2008/2009). Since topics in this project are included in the Horonobe URL Project, JAEA carried out this project as collaboration work continuing in fiscal year 2008. This report summarizes the results of engineering technology carried out in this collaboration work in fiscal year 2011. In fiscal year 2011, part of the equipments for emplacement of buffer material was produced and visualization test for water penetration in buffer material were carried out.

JAEA Reports

Construction of a car-borne survey system for measurement of dose rates in air; KURAMA-II, and its application

Tsuda, Shuichi; Yoshida, Tadayoshi; Nakahara, Yukio; Sato, Tetsuro; Seki, Akiyuki; Matsuda, Norihiro; Ando, Masaki; Takemiya, Hiroshi; Tanigaki, Minoru*; Takamiya, Koichi*; et al.

JAEA-Technology 2013-037, 54 Pages, 2013/10

JAEA-Technology-2013-037.pdf:4.94MB

JAEA has been performing dose rate mapping in air using a car-borne survey system KURAMA-II. The KURAMA system is a GPS-aided mobile radiation monitoring system that has been newly developed by Kyoto University Research Reactor Institute in response to the nuclear disaster. The KURAMA system is composed of an energy-compensated scintillation survey meter for measuring dose rate, electric device for controlling both the dose rates and the position data from a GPS module, a computer server for processing and analyzing data from KURAMA, and client PCs for providing for end users. The KURAMA-II has been improved in small-packaging, durability, and automated data transmission. In consequence, dose rate mapping in wide area has become possible in shorter period of time. This report describes the construction of KURAMA-II, its application and a suggestion of how to manage a large number of KURAMA-II.

Oral presentation

Development and demonstration of the axial cutting device for small diameter brass tubes

Tezuka, Masashi; Koda, Yuya; Nakanishi, Eitoku*; Sugiura, Koji*; Yoshino, Ichiro*; Hachikawa, Shuichi*

no journal, , 

Demonstratin of axial cutting against the condenser cooling tubes.

Oral presentation

Results of the change of the elastic wave velocity before and after the 2011 off the Pacific coast of Tohoku Earthquake in the Kamaishi mine

Hikima, Ryoichi*; Yoshino, Osamu*; Hirano, Toru*; Ishiyama, Koji*; Morita, Yutaka; Sugita, Yutaka; Sano, Osamu*

no journal, , 

This report is one of the case studies that were carried out in order to contribute to the research and evaluation methods development of the impact of massive earthquakes in deep underground geological environment. We report the results of analysis of the changes in elastic wave velocity before and after relatively large-scale earthquake, by using elastic wave measurement data the period from 2005 to 2014. That measurement are continued for more than 20 years, in Iwate Prefecture Kamaishi mine tunnel which close to the epicenter of the off the Pacific coast Tohoku Earthquake.

Oral presentation

In-situ measurement using of high resolution elastic wave velocity measurement system to understand a groundwater flow in rock mass

Matsui, Hiroya; Ishiyama, Koji*; Yoshino, Osamu*; Hikima, Ryoichi*; Sanoki, Satoru*; Hayashi, Kunihiko*; Takahashi, Masahiro*; Sato, Masaru*

no journal, , 

This paper is described about the results of collaboration study between Nishimatsu cop. and JAEA to estimate the applicability of high resolution elastic wave velocity measurement for understanding of a groundwater flow. The measurement was carried out in the vicinity of the groundwater recovery test drift in MIU and it continued for about three month from just after starting at the drainage of the test drift. The results suggested that the elastic wave velocity change were measured with groundwater flow due to drainage of the test drift and the high resolution elastic wave velocity measurement can be applicable for understanding of groundwater flow.

Oral presentation

In-situ evaluation of high accuracy elastic wave measurement system with pseudo random wave

Ishiyama, Koji*; Yoshino, Osamu*; Hikima, Ryoichi*; Matsui, Hiroya; Ozaki, Yusuke; Takeuchi, Ryuji; Sakakibara, Junichi*; Sanoki, Satoru*; Hayashi, Kunihiko*

no journal, , 

In this study, we evaluate the high accurate elastic wave measurement system at the 500m stage in Mizunami underground research laboratory. We used the sine and pseudo random wave between 0.5 kHz and 20 kHz as source signals and received them by 6 receivers. We observed that the elastic wave became low speed and high attenuation around the zone where the rock classification was lower than surroundings. From this result, we could capture the damaged zone by elastic wave. For the capability of deeper exploration, we need to improve the transmission system.

8 (Records 1-8 displayed on this page)
  • 1