Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

High-precision measurement of the spectral width of the nickel-like molybdenum X-ray laser

Hasegawa, Noboru; Kawachi, Tetsuya; Sasaki, Akira; Yamatani, Hiroshi; Kishimoto, Maki; Ochi, Yoshihiro; Tanaka, Momoko; Nishikino, Masaharu; Kunieda, Yuichi; Nagashima, Keisuke; et al.

Journal of Physics; Conference Series, 163(1), p.012062_1 - 012062_4, 2009/06

 Times Cited Count:2 Percentile:66.91(Physics, Multidisciplinary)

The precise knowledge about the wavelength and the spectral width of the lasing line is important for the applications of X-ray lasers, and especially for the spectral width, it is good benchmark of the atomic code because it depends on the electron collisional excitation and de-excitation rate coefficient. Only a few measurements of the spectral width of the laser line have been reported, because the spectral width of the X-ray laser is so narrow that the required spectral resolution is quite high. In this study, we took the nickel-like molybdenum X-ray laser as an example, and measure the spectral width by use of the high resolution spectrometer in order to compare it with a theoretical one.

Journal Articles

High-resolution spectroscopy of the nickel-like molybdenum X-ray laser toward the generation of circularly polarized X-ray laser

Hasegawa, Noboru; Sasaki, Akira; Yamatani, Hiroshi; Kishimoto, Maki; Tanaka, Momoko; Ochi, Yoshihiro; Nishikino, Masaharu; Kunieda, Yuichi; Kawachi, Tetsuya; Yoneda, Hitoki*; et al.

Journal of the Optical Society of Korea, 13(1), p.60 - 64, 2009/03

 Times Cited Count:5 Percentile:29.46(Optics)

The precise knowledge about the spectral width of the X-ray laser line is important to generate the circularly polarized X-ray laser. There are three magnetic sub-levels at lower state of the collisional excitation X-ray laser transition of the nickel-like ion X-ray laser medium. The polarization of each transition is circular or linear. Therefore the circularly polarized X-ray laser could be extracted by the influence of the Zeeman effect if the X-ray laser medium was under the external magnetic field. The strength of the magnetic field required for the circularly polarized X-ray laser is determined by the spectral width of the X-ray laser. Only a few measurements of the spectral width of the laser line have been reported, because the spectral width of the X-ray laser is so narrow that the required spectral resolution is quite high. In this study, we took the nickel-like molybdenum X-ray laser as an example and succeeded the measurement of the spectral width of the X-ray laser.

JAEA Reports

Graphic/network display system for ROSA-V large scale test facility

; *; *; Kunieda, Osamu*; Osaki, Hideki; Anoda, Yoshinari; Kukita, Yutaka

JAERI-Tech 96-004, 74 Pages, 1996/02

JAERI-Tech-96-004.pdf:3.46MB

no abstracts in English

Oral presentation

Generation of polarization control of plasma X-ray laser by strong magnetic field

Hasegawa, Noboru; Kawachi, Tetsuya; Sasaki, Akira; Kishimoto, Maki; Tanaka, Momoko; Ochi, Yoshihiro; Nishikino, Masaharu; Kunieda, Yuichi; Iwamae, Atsushi*; Yoneda, Hitoki*

no journal, , 

We tried to generate the circularly polarized X-ray laser by use of the high power pulse magnet system. There are three magnetic sub-levels at lower state of the collisional excitation X-ray laser transition. For example, nickel-like X-ray laser transition (4d (m = 0) - 4p (m = -1, 0, +1)), the polarization from each transitions are right-handed circular ($$Delta$$m = -1), left-handed circular ($$Delta$$m = +1), and linear ($$Delta$$m = 0) along to the quantization axis. If the quantization axis were decided by the magnetic field from the outside of the X-ray laser medium, the circularly polarized X-ray laser can be extracted. In this study, we tried to generate the circularly polarized X-ray laser by using the nickel-like molybdenum X-ray laser medium (18.9 nm) with 20 Tesla magnetic field generated by the pulse power magnet system.

4 (Records 1-4 displayed on this page)
  • 1