Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Analysis of the radioactivity concentrations in radioactive waste generated from JRR-3, JRR-4 and JRTF facilities

Tobita, Minoru*; Konda, Miki; Omori, Takeshi*; Nabatame, Tsutomu*; Onizawa, Takashi*; Kurosawa, Katsuaki*; Haraga, Tomoko; Aono, Ryuji; Mitsukai, Akina; Tsuchida, Daiki; et al.

JAEA-Data/Code 2022-007, 40 Pages, 2022/11

JAEA-Data-Code-2022-007.pdf:1.99MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete, ash, ceramic and brick samples generated from JRR-3, JRR4 and JRTF facilities. In this report, we summarized the radioactivity concentrations of 24 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{99}$$Tc, $$^{rm 108m}$$Ag, $$^{129}$$I, $$^{137}$$Cs, $$^{133}$$Ba, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples in fiscal years 2020-2021.

Journal Articles

Effect of non-uniform electron energy distribution function on plasma production in large arc driven negative ion source

Shibata, Takanori; Koga, Shojiro*; Terasaki, Ryo*; Inoue, Takashi; Dairaku, Masayuki; Kashiwagi, Mieko; Taniguchi, Masaki; Tobari, Hiroyuki; Tsuchida, Kazuki; Umeda, Naotaka; et al.

Review of Scientific Instruments, 83(2), p.02A719_1 - 02A719_3, 2012/02

 Times Cited Count:2 Percentile:12.28(Instruments & Instrumentation)

In the NBI for large fusion devices, production of uniform negative ion beam is one of important issues. A physical model is proposed to understand the non-uniformity. It has been qualitatively shown that the non-uniform beam intensity is due to the following process; (1) formation of non-uniform EEDF, (2) localized production of hydrogen atoms/ions (H$$^0$$/H$$^+$$) due to (1), (3) non-uniform flux of H$$^0$$/H$$^+$$ to the PG and (4) localized surface production of negative ions. However, in the past studies, the EEDF was assumed as two temperature Maxwellian distribution from measurements. Thus effects of high energy electrons are not taken into account precisely. In the present research, local EEDF is calculated by the 3D Monte-Carlo kinetic model which takes into account the spatial and magnetic configurations of the real negative ion source. The numerical result show that high energy component of the EEDF enhances the spatial non-uniformity in the production rate of H$$^0$$/H$$^+$$.

Journal Articles

Electric installation at environment of nuclear fusion, 49; Development of radiation-resistant lighting

Okamura, Hiroki*; Tsuchida, Takashi*; Okada, Masao*; Yamagata, Ryohei; Seito, Hajime; Haruyama, Yasuyuki; Kaneko, Hirohisa

2011 Nen (Dai-29-Kai) Denki Setsubi Gakkai Zenkoku Taikai Koen Rombunshu, p.367 - 368, 2011/09

no abstracts in English

Journal Articles

Development of radiation-resistant lighting

Tsuchida, Takashi*; Yamagata, Ryohei; Seito, Hajime; Haruyama, Yasuyuki; Kaneko, Hirohisa; Kashimura, Shinji*

JAEA-Review 2010-065, JAEA Takasaki Annual Report 2009, P. 22, 2011/01

There are a lot of restrictions of electric installations in a high radiation environment. For example longevity of electric devices would be shortened remarkably in a high radiation environment. It becomes impossible also for lighting equipments to keep an original function under a high radiological environment due to deterioration of insulation resistance of ballasts and luminous flux decrease of lamps, etc. The authors developed radiation-resistant lighting. This research aims to verify those functionality and safety under $$gamma$$-ray irradiation conditions.

Journal Articles

The Electric installation at environment of nuclear fusion, 34; Fase operating characteristics in high magnetic field, 2

Okawa, Yoshinao; Kashimura, Shinji*; Murano, Yoshihiro*; Ito, Michio*; Okada, Kenichi*; Izumi, Keisuke*; Tsuchida, Takashi*

Dai-19-Kai Denki Setsubi Gakkai Zenkoku Taikai Koen Rombunshu, p.415 - 416, 2001/00

no abstracts in English

5 (Records 1-5 displayed on this page)
  • 1