Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Multiple mechanisms in proton-induced nucleon removal at $$sim$$100 MeV/nucleon

Pohl, T.*; Sun, Y. L.*; Obertelli, A.*; Lee, J.*; G$'o$mez-Ramos, M.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Cai, B. S.*; Yuan, C. X.*; Brown, B. A.*; et al.

Physical Review Letters, 130(17), p.172501_1 - 172501_8, 2023/04

 Times Cited Count:5 Percentile:93.15(Physics, Multidisciplinary)

We report on the first proton-induced single proton- and neutron-removal reactions from the neutron deficient $$^{14}$$O nucleus with large Fermi-surface asymmetry at $$sim$$100 MeV/nucleon. Our results provide the first quantitative contributions of multiple reaction mechanisms including the quasifree knockout, inelastic scattering, and nucleon transfer processes. It is shown that the inelastic scattering and nucleon transfer, usually neglected at such energy regime, contribute about 50% and 30% to the loosely bound proton and deeply bound neutron removal, respectively.

Journal Articles

Quasifree neutron knockout reaction reveals a small $$s$$-Orbital component in the Borromean nucleus $$^{17}$$B

Yang, Z. H.*; Kubota, Yuki*; Corsi, A.*; Yoshida, Kazuki; Sun, X.-X.*; Li, J. G.*; Kimura, Masaaki*; Michel, N.*; Ogata, Kazuyuki*; Yuan, C. X.*; et al.

Physical Review Letters, 126(8), p.082501_1 - 082501_8, 2021/02

AA2020-0819.pdf:1.29MB

 Times Cited Count:45 Percentile:96.69(Physics, Multidisciplinary)

A quasifree ($$p$$,$$pn$$) experiment was performed to study the structure of the Borromean nucleus $$^{17}$$B, which had long been considered to have a neutron halo. By analyzing the momentum distributions and exclusive cross sections, we obtained the spectroscopic factors for $$1s_{1/2}$$ and $$0d_{5/2}$$ orbitals, and a surprisingly small percentage of 9(2)% was determined for $$1s_{1/2}$$. Our finding of such a small $$1s_{1/2}$$ component and the halo features reported in prior experiments can be explained by the deformed relativistic Hartree-Bogoliubov theory in continuum, revealing a definite but not dominant neutron halo in $$^{17}$$B. The present work gives the smallest $$s$$- or $$p$$-orbital component among known nuclei exhibiting halo features and implies that the dominant occupation of $$s$$ or $$p$$ orbitals is not a prerequisite for the occurrence of a neutron halo.

Journal Articles

How different is the core of $$^{25}$$F from $$^{24}$$O$$_{g.s.}$$ ?

Tang, T. L.*; Uesaka, Tomohiro*; Kawase, Shoichiro; Beaumel, D.*; Dozono, Masanori*; Fujii, Toshihiko*; Fukuda, Naoki*; Fukunaga, Taku*; Galindo-Uribarri, A.*; Hwang, S. H.*; et al.

Physical Review Letters, 124(21), p.212502_1 - 212502_6, 2020/05

 Times Cited Count:14 Percentile:73.46(Physics, Multidisciplinary)

The structure of a neutron-rich $$^{25}$$F nucleus is investigated by a quasifree ($$p,2p$$) knockout reaction. The sum of spectroscopic factors of $$pi 0d_{5/2}$$ orbital is found to be 1.0 $$pm$$ 0.3. The result shows that the $$^{24}$$O core of $$^{25}$$F nucleus significantly differs from a free $$^{24}$$O nucleus, and the core consists of $$sim$$35% $$^{24}$$O$$_{rm g.s.}$$, and $$sim$$65% excited $$^{24}$$O. The result shows that the $$^{24}$$O core of $$^{25}$$F nucleus significantly differs from a free $$^{24}$$O nucleus. The result may infer that the addition of the $$0d_{5/2}$$ proton considerably changes the neutron structure in $$^{25}$$F from that in $$^{24}$$O, which could be a possible mechanism responsible for the oxygen dripline anomaly.

Oral presentation

Isomer spectroscopy using actinide targets

Sugiyama, Koichi*; Go, Shintaro*; Tomimatsu, Taro*; Kai, Tamito*; Nagae, Daisuke*; Ishibashi, Yuichi*; Matsunaga, Sotaro*; Nagata, Yuto*; Nishibata, Hiroki*; Washiyama, Kohei*; et al.

no journal, , 

We have successfully performed in-beam gamma-ray spectroscopy using the isomer-scope technique to study excited-state structure of neutron-rich heavy-actinide nuclei. The neutron-rich heavy-actinide nuclei were produced in the multinucleon-transfer reactions with a $$^{248}$$Cm target and $$^{18}$$O projectiles accelerated with the JAEA tandem accelerator. Projectile-like scattered particles were detected with Si E-$$Delta$$E telescopes placed at the backward angle, and target-like scattered particles of isomers were caught by an annular aluminum plate placed at about 60-mm downstream from the target. Four Ge detectors and 4 LaBr detectors were placed at the periphery of the aluminum plate, and detected gamma rays from the isomers. Gamma rays emitted from the actinide isomers were successfully observed with a good sensitivity owing to the tungsten shield placed between the target and the detectors.

Oral presentation

Response of solar cell as a heavy-ion detector

Asai, Masato; Ishibashi, Yuichi*; Niwase, Toshitaka*; Makii, Hiroyuki; Ito, Yuta; Sato, Tetsuya; Tsukada, Kazuaki; Sakaguchi, Satoshi*; Morita, Kosuke*; Watanabe, Yutaka*; et al.

no journal, , 

Solar cells for power generation can be used as a high-energy heavy-ion detector because it has diode characteristics. To utilize the solar cells for fission-fragment measurements, we have investigated the response (energy resolution and pulse height defect) of a solar cell to heavy ions of various nuclides with several different energies.

5 (Records 1-5 displayed on this page)
  • 1