Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 29

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Progress of divertor simulation research toward the realization of detached plasma using a large tandem mirror device

Nakashima, Yosuke*; Takeda, Hisahito*; Ichimura, Kazuya*; Hosoi, Katsuhiro*; Oki, Kensuke*; Sakamoto, Mizuki*; Hirata, Mafumi*; Ichimura, Makoto*; Ikezoe, Ryuya*; Imai, Tsuyoshi*; et al.

Journal of Nuclear Materials, 463, p.537 - 540, 2015/08

 Times Cited Count:19 Percentile:82.55(Materials Science, Multidisciplinary)

Journal Articles

Development of divertor simulation research in the GAMMA 10/PDX tandem mirror

Nakashima, Yosuke*; Sakamoto, Mizuki*; Yoshikawa, Masayuki*; Oki, Kensuke*; Takeda, Hisahito*; Ichimura, Kazuya*; Hosoi, Katsuhiro*; Hirata, Mafumi*; Ichimura, Makoto*; Ikezoe, Ryuya*; et al.

Proceedings of 25th IAEA Fusion Energy Conference (FEC 2014) (CD-ROM), 8 Pages, 2014/10

Journal Articles

Present status of linear plasma devices and issues on DEMO divertor design

Sakamoto, Mizuki*; Ono, Noriyasu*; Asakura, Nobuyuki; Hoshino, Kazuo

Purazuma, Kaku Yugo Gakkai-Shi, 90(8), p.473 - 479, 2014/08

no abstracts in English

Journal Articles

Divertor, scrape off layer and plasma-wall interactions

Nakano, Tomohide; Sakamoto, Mizuki*

Purazuma, Kaku Yugo Gakkai-Shi, 88(11), p.672 - 674, 2012/11

no abstracts in English

Journal Articles

Eddy current-adjusted plasma shape reconstruction by Cauchy condition surface method on QUEST

Nakamura, Kazuo*; Jiang, Y.*; Liu, X.*; Mitarai, Osamu*; Kurihara, Kenichi; Kawamata, Yoichi; Sueoka, Michiharu; Hasegawa, Makoto*; Tokunaga, Kazutoshi*; Zushi, Hideki*; et al.

Fusion Engineering and Design, 86(6-8), p.1080 - 1084, 2011/10

 Times Cited Count:4 Percentile:32.59(Nuclear Science & Technology)

Journal Articles

Application study of a plasma shape reproduction system based on the Cauchy-condition surface (CCS) method considering plasma real-time control

Kurihara, Kenichi; Kawamata, Yoichi; Sueoka, Michiharu; Wang, F.*; Nakamura, Kazuo*; Mitarai, Osamu*; Sato, Konosuke*; Zushi, Hideki*; Hanada, Kazuaki*; Sakamoto, Mizuki*; et al.

Kyushu Daigaku Oyo Rikigaku Kenkyujo RIAM Foramu 2008 Koen Yoshi, p.66 - 69, 2008/06

no abstracts in English

Journal Articles

Physics issues and simulation of the JT-60 SA divertor for large heat and particle handling

Asakura, Nobuyuki; Kawashima, Hisato; Shimizu, Katsuhiro; Sakurai, Shinji; Fujita, Takaaki; Takenaga, Hidenobu; Nakano, Tomohide; Kubo, Hirotaka; Higashijima, Satoru; Hayashi, Takao; et al.

Europhysics Conference Abstracts (CD-ROM), 31F, 4 Pages, 2007/00

Divertor design for the JT-60 SA has been progressing in order to handle large heat flux during full pulse duration of 100 s. Divertor should be suitable for single null plasma experiments with the full power injection of 41 MW. The simulation results using 2D fluid (plasma) and Monte-Carlo (neutral) code are summarized. Lower single-null divertor is designed for ITER-like plasma configuration in order to study physics concept of the ITER divertor: control of the plasma detachment. Simulation results for various divertor geometries showed that the vertical target with V-shaped corner can produce plasma detachment near the outer strike-point for medium edge plasma density. It was also demonstrated that the divertor plasma became attached to move the outer strike point above the V-corner, suggesting that recover from sever detachment can be achieved by changing the plasma location. USN divertor will be designed for high-$$beta$$ plasma experiments with the highest shaping plasma of S=6.

Journal Articles

Overview of national centralized tokamak program; Mission, design and strategy to contribute ITER and DEMO

Ninomiya, Hiromasa; Akiba, Masato; Fujii, Tsuneyuki; Fujita, Takaaki; Fujiwara, Masami*; Hamamatsu, Kiyotaka; Hayashi, Nobuhiko; Hosogane, Nobuyuki; Ikeda, Yoshitaka; Inoue, Nobuyuki; et al.

Journal of the Korean Physical Society, 49, p.S428 - S432, 2006/12

To contribute DEMO and ITER, the design to modify the present JT-60U into superconducting coil machine, named National Centralized Tokamak (NCT), is being progressed under nationwide collaborations in Japan. Mission, design and strategy of this NCT program is summarized.

Journal Articles

Magnetic sensor dependence of CCS method to reproduce ST plasma shape

Wang, F.*; Nakamura, Kazuo*; Mitarai, Osamu*; Kurihara, Kenichi; Kawamata, Yoichi; Sueoka, Michiharu; Sato, Konosuke*; Zushi, Hideki*; Hanada, Kazuaki*; Sakamoto, Mizuki*; et al.

Kyushu Daigaku Oyo Rikigaku Kenkyujo RIAM Foramu 2006 Koen Yoshi, p.138 - 141, 2006/06

no abstracts in English

Journal Articles

Overview of the national centralized tokamak programme

Kikuchi, Mitsuru; Tamai, Hiroshi; Matsukawa, Makoto; Fujita, Takaaki; Takase, Yuichi*; Sakurai, Shinji; Kizu, Kaname; Tsuchiya, Katsuhiko; Kurita, Genichi; Morioka, Atsuhiko; et al.

Nuclear Fusion, 46(3), p.S29 - S38, 2006/03

 Times Cited Count:13 Percentile:41.76(Physics, Fluids & Plasmas)

The National Centralized Tokamak (NCT) facility program is a domestic research program for advanced tokamak research to succeed JT-60U incorporating Japanese university accomplishments. The mission of NCT is to establish high beta steady-state operation for DEMO and to contribute to ITER. The machine flexibility and mobility is pursued in aspect ratio and shape controllability, feedback control of resistive wall modes, wide current and pressure profile control capability for the demonstration of the high-b steady state.

Journal Articles

Engineering design and control scenario for steady-state high-beta operation in national centralized tokamak

Tsuchiya, Katsuhiko; Akiba, Masato; Azechi, Hiroshi*; Fujii, Tsuneyuki; Fujita, Takaaki; Fujiwara, Masami*; Hamamatsu, Kiyotaka; Hashizume, Hidetoshi*; Hayashi, Nobuhiko; Horiike, Hiroshi*; et al.

Fusion Engineering and Design, 81(8-14), p.1599 - 1605, 2006/02

 Times Cited Count:1 Percentile:9.98(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Design study of national centralized tokamak facility for the demonstration of steady state high-$$beta$$ plasma operation

Tamai, Hiroshi; Akiba, Masato; Azechi, Hiroshi*; Fujita, Takaaki; Hamamatsu, Kiyotaka; Hashizume, Hidetoshi*; Hayashi, Nobuhiko; Horiike, Hiroshi*; Hosogane, Nobuyuki; Ichimura, Makoto*; et al.

Nuclear Fusion, 45(12), p.1676 - 1683, 2005/12

 Times Cited Count:15 Percentile:45.53(Physics, Fluids & Plasmas)

Design studies are shown on the National Centralized Tokamak facility. The machine design is carried out to investigate the capability for the flexibility in aspect ratio and shape controllability for the demonstration of the high-beta steady state operation with nation-wide collaboration, in parallel with ITER towards DEMO. Two designs are proposed and assessed with respect to the physics requirements such as confinement, stability, current drive, divertor, and energetic particle confinement. The operation range in the aspect ratio and the plasma shape is widely enhanced in consistent with the sufficient divertor pumping. Evaluations of the plasma performance towards the determination of machine design are presented.

Journal Articles

Progress in physics and technology developments for the modification of JT-60

Tamai, Hiroshi; Matsukawa, Makoto; Kurita, Genichi; Hayashi, Nobuhiko; Urata, Kazuhiro*; Miura, Yushi; Kizu, Kaname; Tsuchiya, Katsuhiko; Morioka, Atsuhiko; Kudo, Yusuke; et al.

Plasma Science and Technology, 6(1), p.2141 - 2150, 2004/02

 Times Cited Count:2 Percentile:6.49(Physics, Fluids & Plasmas)

The dominant issue for the the modification program of JT-60 (JT-60SC) is to demonstrate the steady state reactor relevant plasma operation. Physics design on plasma parameters, operation scenarios, and the plasma control method are investigated for the achievement of high-$$beta$$. Engineering design and the R&D on the superconducting magnet coils, radiation shield, and vacuum vessel are performed. Recent progress in such physics and technology developments is presented.

Journal Articles

Objectives and design of the JT-60 superconducting tokamak

Ishida, Shinichi; Abe, Katsunori*; Ando, Akira*; Chujo, T.*; Fujii, Tsuneyuki; Fujita, Takaaki; Goto, Seiichi*; Hanada, Kazuaki*; Hatayama, Akiyoshi*; Hino, Tomoaki*; et al.

Nuclear Fusion, 43(7), p.606 - 613, 2003/07

no abstracts in English

Journal Articles

Objectives and design of the JT-60 superconducting tokamak

Ishida, Shinichi; Abe, Katsunori*; Ando, Akira*; Cho, T.*; Fujii, Tsuneyuki; Fujita, Takaaki; Goto, Seiichi*; Hanada, Kazuaki*; Hatayama, Akiyoshi*; Hino, Tomoaki*; et al.

Nuclear Fusion, 43(7), p.606 - 613, 2003/07

 Times Cited Count:33 Percentile:69.14(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Research activities on Tokamaks in Japan; JT-60U, JFT-2M and TRIAM-1M

Ninomiya, Hiromasa; Kitsunezaki, Akio; Shimizu, Masatsugu; Kuriyama, Masaaki; JT-60 Team; Kimura, Haruyuki; Kawashima, Hisato; Tsuzuki, Kazuhiro; Sato, Masayasu; Isei, Nobuaki; et al.

Fusion Science and Technology, 42(1), p.7 - 31, 2002/07

 Times Cited Count:13 Percentile:27.27(Nuclear Science & Technology)

In order to establish scientific basis for the sustainment of highly integrated performance required in the advanced steady-state operation, JT-60U has been optimizing the discharge control scenarios of improved confinement plasmas and expanding the operation regions. Promising results toward the steady-state tokamak were obtained. The detail of such results is reported. JFT-2M has performed advanced and basic research for the development of high performance tokamak plasma as well as the structural material for a fusion reactor. The toroidal ripple reduction with ferritic steel plates outside the vacuum vessel was successfully demonstrated. No adverse effects were observed in the pre-testing on compatibility between ferritic steel plates, covering ~20% of the inside wall of the vacuum vessel, and plasma. The results of TRIAM-1M is also reported.

Oral presentation

Optimization of the magnetic sensors positioning by the CCS method to reproduce the ST plasma shape

Wang, F.*; Nakamura, Kazuo*; Mitarai, Osamu*; Kurihara, Kenichi; Kawamata, Yoichi; Sueoka, Michiharu; Sato, Konosuke*; Zushi, Hideki*; Hanada, Kazuaki*; Sakamoto, Mizuki*; et al.

no journal, , 

no abstracts in English

Oral presentation

Plasma shape reproduction of spherical tokamak by using Cauchy-condition surface method

Wang, F.*; Nakamura, Kazuo*; Mitarai, Osamu*; Kurihara, Kenichi; Kawamata, Yoichi; Sueoka, Michiharu; Sato, Konosuke*; Zushi, Hideki*; Hanada, Kazuaki*; Sakamoto, Mizuki*; et al.

no journal, , 

no abstracts in English

Oral presentation

Current profile dependence of CCS method to reproduce spherical tokamak plasma shape

Wang, F.*; Nakamura, Kazuo*; Mitarai, Osamu*; Kurihara, Kenichi; Kawamata, Yoichi; Sueoka, Michiharu; Sato, Konosuke*; Zushi, Hideki*; Hanada, Kazuaki*; Sakamoto, Mizuki*; et al.

no journal, , 

no abstracts in English

Oral presentation

SVD in plasma shape reconstruction by CCS method

Nakamura, Kazuo*; Matsufuji, Shinji*; Tomoda, Seiji*; Wang, F.*; Mitarai, Osamu*; Kurihara, Kenichi; Kawamata, Yoichi; Sueoka, Michiharu; Sato, Konosuke*; Zushi, Hideki*; et al.

no journal, , 

no abstracts in English

29 (Records 1-20 displayed on this page)