Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Survey and Research of the Latest Works of LES about Models Near Wall Boundary and Applications to Complex Flow Path

Sakai, Norio*; Shimizu, Takeshi*

JNC TJ9420 2005-001, 69 Pages, 2005/02

JNC-TJ9420-2005-001.pdf:3.34MB

Since treatments for wall boundaries and flows around complex paths are issues in LES modeling, a literature research on the LES methods for wall boundaries and applications to flows at complex paths was conducted to investigate the latest trend. Publications of domestic or international societies, workshops, symposiums, and journals about for past 3 years (2001-2004) were searched and collected, from which 23 research papers were selected and investigated.For the investigation, the treatments for wall boundaries used in the literature were classified roughly into five methods, i.e. (1) no-slip condition, (2) algebraic wall model (wall function), (3) wall model based on boundary-layer approximations (differential equation wall model), (4) hybrid method, (5) immersed boundary method. No-slip conditions were widely applied in recent works. For algebraic wall models, new wall functions that considered the effect of the velocity component vertical to a wall or circulation regions were examined. There were also some researches that devised the process of calculating the wall-shear stress with a conventional wall function. The researches using differential equation wall models presented the dynamic modification of model coefficients, or the application of high-order turbulence model such as the k-e model to the solution of Navier-Stokes equation in the boundary layer. The researches of hybrid methods focused on the discontinuity of velocity and eddy viscosity at the LES/RANS interface. Several researches that adopted immersed boundary methods for Cartesian grids with curved wall boundaries introduced the investigation of the Poisson solvers and the numerical modification of pressure boundary conditions. Many of investigated researches used hybrid methods. Thus, it is expected that they will be mainly applied to large-scale and complex simulations if the standard treatment for the discontinuity at the interface is developed.

Oral presentation

Essential characteristics for challenging light water reactors in conformity with social needs and preference

Yamamoto, Akio*; Narukawa, Takafumi; Sakai, Norio*

no journal, , 

no abstracts in English

2 (Records 1-2 displayed on this page)
  • 1