Refine your search:     
Report No.
 - 
Search Results: Records 1-15 displayed on this page of 15
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Application of virtual tour for online training safeguards exercises

Sekine, Megumi; Sukegawa, Hidetoshi; Ishikuro, Yasuhiro; Oyama, Koji; Obata, Takashi; Hayashi, Kazuhiko; Inoue, Naoko

Proceedings of INMM & ESARDA Joint Virtual Annual Meeting (Internet), 10 Pages, 2021/08

The Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN) of the Japan Atomic Energy Agency (JAEA) developed the virtual tour of a reference nuclear facility. The developed virtual tour was applied to the Design Information Questionnaire (DIQ) workshop exercise for the online SSAC course held in November 2020 in connection with the IAEA safeguards-related regional training course. Also, it was applied to the Complementary Access (CA) exercise for the online workshop of the Nuclear Security and Safeguards Project under the Forum for Nuclear Cooperation in Asia (FNCA), held in February 2021. The workshop exercises have been implemented for in-person format however due to COVID-19 pandemic, a virtual tour was applied. The virtual tour was found to be a strong tool not only for online training as an alternative for a facility tour, but also considered to be more advantageous even for the in-person training. The developed virtual tour of a reference nuclear facility, going to shut down, can find potentially varied applications. The paper describes how to create a virtual tour of a reference research reactor facility for the DIQ and CA exercises respectively which have different learning objectives. It emphasizes how the features of the reference facility were captured and the challenges encountered to convey to the training participants the importance of providing the required design information while not being physically present at the facility. It also show the advantage of using the same virtual tour to describe the safeguards-related verification activities of a complementary access. Virtual tours can be applied to a variety of training.

Journal Articles

Outline and implementation status of decommissioning plan of JRR-4

Ishikuro, Yasuhiro; Nemoto, Tsutomu; Oyama, Koji

Dekomisshoningu Giho, (60), p.8 - 16, 2019/09

JRR-4 had been shifted to decommissioning phase in December 2017 after we received the approval of the decommissioning plan of JRR-4 on June 2017 and the approval of the change of the safety regulations related to it. Decommissioning works are divided two phases and proceeded according to its plan. In the first phase, we perform reactor shutdown, fuel removal and maintenance management, and in the second phase, the dismantling works. JRR-4 was initially installed for the purpose of shielding experiments of the nuclear ship Mutsu, reached its first criticality in 1965, and had been operated for about 45 years until Dec. 2010. However, in consideration of the expenses required for the new regulatory standards implemented after the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant accident and aging degradation, the decommissioning of JRR-4 was determined according to the JAEA reform plan in Sep. 2013. This report describes the outline of the decommissioning plan of JRR-4 and the status of its implementation.

Journal Articles

Outline and implementation status of decommissioning plan of JRR-4

Ishikuro, Yasuhiro; Nemoto, Tsutomu; Yamada, Yusuke; Oyama, Koji

Nihon Hozen Gakkai Dai-15-Kai Gakujutsu Koenkai Yoshishu, p.501 - 505, 2018/07

After operating until December 2010, JRR-4 was under periodical self-inspection for the next operation. After that, it suffered from the Great East Japan Earthquake on March 11, 2011. But it recovered almost a year later. However, we determined to decommission JRR-4 in September 2013. After that, we received the approval of the decommissioning plan of JRR-4 on June 7, 2017. And we received the approval of the change of the safety regulations related to it. Subsequently JRR-4 was shifted to decommission phase in December 2017. This report describes the outline of the decommissioning plan of JRR-4 and the implementation status.

Journal Articles

Conceptual design of experimental equipment for large-diameter NTD-Si

Yagi, Masahiro; Watanabe, Masanori; Oyama, Koji; Yamamoto, Kazuyoshi; Komeda, Masao; Kashima, Yoichi; Yamashita, Kiyonobu

Applied Radiation and Isotopes, 67(7-8), p.1225 - 1229, 2009/07

 Times Cited Count:11 Percentile:59.85(Chemistry, Inorganic & Nuclear)

JAEA Reports

Irradiation growth of graphite reflector installed in JRR-4

Yagi, Masahiro; Horiguchi, Hironori; Yokoo, Kenji; Oyama, Koji; Kusunoki, Tsuyoshi

JAEA-Technology 2008-072, 79 Pages, 2008/09

JAEA-Technology-2008-072.pdf:43.31MB

A crack had been found on the weld of one reflector element in JRR-4. A survey revealed that the cause for the crack was the expansion of graphite reflector in the reflector element. It appeared that the expansion of graphite reflector was caused by fast neutron irradiation at low temperature. The survey confirmed radiographically that graphite reflectors in the other reflector elements without the crack expanded similarly by the irradiation growth. Irradiated graphite reflectors were carefully observed and were precisely measured the three dimensions after dismantling the irradiated reflector elements in order to understand quantitatively the irradiation growth behavior of IG-110 graphite under the JRR-4 operation condition. As the results, it was confirmed that growth of graphite reflectors increased with increasing of fast neutron fluence. The maximum irradiation growth per fast neutron fluence was 7.13$$times$$10$$^{-25}$$%m$$^{2}$$/n, the minimum was 4.21$$times$$10$$^{-25}$$%m$$^{2}$$/n, the average was 5.71$$times$$10$$^{-25}$$%m$$^{2}$$/n in the range of fast neutron fluence below 2.5$$times$$10$$^{24}$$n/m$$^{2}$$.

JAEA Reports

Conceptual design of irradiation experimental device for 12 inch NTD-Si ingot in JRR-4 (Contract research)

Yagi, Masahiro; Watanabe, Masanori; Oyama, Koji; Komeda, Masao; Yamamoto, Kazuyoshi; Kashima, Yoichi

JAEA-Technology 2008-015, 91 Pages, 2008/03

JAEA-Technology-2008-015.pdf:22.92MB

The irradiation experimental device is designed by surveying analytically an irradiation condition to improve the neutron flux distribution of the radial direction on NTD-Si by using neutron transportation calculation Monte Carlo calculation code MCNP5 in order to develop neutron irradiation technology for the large-diameter silicon to 12 inches diameter at the maximum and an irradiation experiment will be performed in JRR-4. Thus the validity of the design technique of the irradiation device will be confirmed by this experiment. The irradiation experimental device is installed in the side of the core tank outer wall. A 12 inches silicon ingot of 60cm in height is irradiated in a reflector cover which surrounds the silicon ingot for increasing the flux. The silicon ingot is rotated during irradiation in order to require the condition of uniformly distributed thermal neutron flux over whole circumferences. A uniform irradiation condition was achieved by the pass-through core method, in which silicon ingot moved up and down with rotating. The condition was satisfied when silicon was covered with the thermal neutron filter, which is made from aluminum alloy of thickness of 2mm with natural boron element ratio of 1.5%, and was moved in the range from -42mm to 22mm for the center of the reactor core. The deviation of the Si-30 neutron absorption reaction rate was range from -3.2% to +5.3% in the intermediate volume of 40cm height and the neutron absorption reaction ratio of the circumference to the center was within 1.09 in the volume.

JAEA Reports

Guidance of operation practice and nuclear physics experiments using JRR-4

Yokoo, Kenji; Horiguchi, Hironori; Yagi, Masahiro; Nagadomi, Hideki; Yamamoto, Kazuyoshi; Sasajima, Fumio; Oyama, Koji; Ishikuro, Yasuhiro; Sasaki, Tsutomu; Hirane, Nobuhiko; et al.

JAEA-Technology 2007-018, 104 Pages, 2007/03

JAEA-Technology-2007-018.pdf:5.92MB

Reactor operation training using JRR-4 (Japan Research Reactor No.4) was started in FY 1969, one of the curriculums of Nuclear Technology and Education Center (NuTEC). After that, the program was updated and carried out for reactor operation training, control rod calibration, and measurement of various kind of characteristics. JRR-4 has been contributed for nuclear engineer training that is over 1,700 trainees from bother domestic and foreign countries. JRR-4 can be used for experiment from zero power to 3500kW, and the trainees can make experience to operate the reactor from start up to shut down, not only zero-power experiments (critical approach, control rod calibration, reactivity measurement, etc.) but also other experiments under high power operation (xenon effect, temperature effects, reactor power calibration, etc.). This report is based on various kinds of guidance texts using for training, and collected for operation and experiments for reactor physics.

JAEA Reports

Management techniques of the JRR-4 heat exchanger

Horiguchi, Hironori; Oyama, Koji; Ishikuro, Yasuhiro; Hirane, Nobuhiko; Ito, Kazuhiro; Kameyama, Iwao

JAERI-Tech 2005-001, 38 Pages, 2005/02

JAERI-Tech-2005-001.pdf:2.79MB

After JRR-4 heat exchanger was renewed in made of stainless steel from carbon steel, it was examined how to manage the heat exchanger. The main subject is the cleaning technology of the heat exchanger. The recovery of old heat exchanger cooling performance has been by only chemical cleaning. Now we use chemical and dry cleaning as a new technique. It helps prevent of corrosions of secondary pipes and reduce of management costs. This report describes the performance management and cleaning technology of the JRR-4 heat exchanger and the management of the JRR-4 coolant.

Oral presentation

Irradiation growth of graphite in reflector elements of JRR-4

Horiguchi, Hironori; Shibata, Taiju; Yagi, Masahiro; Yokoo, Kenji; Oyama, Koji; Kusunoki, Tsuyoshi

no journal, , 

The Japan Research Reactor No.4 (JRR-4) are used for medical irradiation (Boron Neutron Capture Therapy), education and training for engineers, activation analysis and researches in various fields. A crack was found on the weld of aluminum cladding of a reflector element, in which graphite reflector was set. A survey on the reflector element confirmed that the crack was caused by growth of graphite. The growth of graphite was observed in the other reflector elements by the radiographic testing (RT). In order to understand the relations between irradiation fluence and irradiation growth, the dimensions of irradiated graphite reflectors were precisely measured after dismantling the reflector elements. We revealed that the growth of graphite increased with fast neutron fluence at low temperature which was estimated below 200$$^{circ}$$C under JRR-4 operation condition.

Oral presentation

Irradiation growth of graphite reflector installed in JRR-4, 1; Investigation of the crack in a reflector element

Sakata, Mami; Oyama, Koji; Yagi, Masahiro; Sasajima, Fumio

no journal, , 

no abstracts in English

Oral presentation

The Radiographic examination on the crack of reactor reflector elements

Maeda, Akio; Oyama, Koji; Kikuchi, Taiji

no journal, , 

no abstracts in English

Oral presentation

Irradiation growth of graphite reflector installed in JRR-4, 2; Irradiation growth investigation of graphite

Yokoo, Kenji; Yagi, Masahiro; Horiguchi, Hironori; Oyama, Koji; Kusunoki, Tsuyoshi

no journal, , 

no abstracts in English

Oral presentation

Investigation of the crack on a weld area in a reflector element of JRR-4

Sasaki, Tsutomu; Yagi, Masahiro; Oyama, Koji

no journal, , 

no abstracts in English

Oral presentation

Investigation of the trouble of motor driver in a control rod drive mechanism of JRR-4

Kimura, Kazuya; Oyama, Koji

no journal, , 

no abstracts in English

Oral presentation

Production and management of JRR-4 reflection element

Sasaki, Tsutomu; Yagi, Masahiro; Hirane, Nobuhiko; Oyama, Koji

no journal, , 

no abstracts in English

15 (Records 1-15 displayed on this page)
  • 1